ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/CubicSpline.cpp
Revision: 1479
Committed: Mon Jul 26 19:00:48 2010 UTC (14 years, 9 months ago) by gezelter
File size: 8685 byte(s)
Log Message:
Added EAM.  Still segfaults but compiles.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include "math/CubicSpline.hpp"
43 #include "utils/simError.h"
44 #include <cmath>
45 #include <algorithm>
46 #include <iostream>
47
48 using namespace OpenMD;
49 using namespace std;
50
51 CubicSpline::CubicSpline() : generated(false), isUniform(true) {}
52
53 void CubicSpline::addPoint(RealType xp, RealType yp) {
54 data.push_back(make_pair(xp, yp));
55 }
56
57 void CubicSpline::addPoints(const vector<RealType>& xps,
58 const vector<RealType>& yps) {
59
60 if (xps.size() != yps.size()) {
61 printf( painCave.errMsg,
62 "CubicSpline::addPoints was passed vectors of different length!\n");
63 painCave.severity = OPENMD_ERROR;
64 painCave.isFatal = 1;
65 simError();
66 }
67
68 for (int i = 0; i < xps.size(); i++)
69 data.push_back(make_pair(xps[i], yps[i]));
70 }
71
72 void CubicSpline::generate() {
73 // Calculate coefficients defining a smooth cubic interpolatory spline.
74 //
75 // class values constructed:
76 // n = number of data points.
77 // x = vector of independent variable values
78 // y = vector of dependent variable values
79 // b = vector of S'(x[i]) values.
80 // c = vector of S"(x[i])/2 values.
81 // d = vector of S'''(x[i]+)/6 values (i < n).
82 // Local variables:
83
84 RealType fp1, fpn, h, p;
85
86 // make sure the sizes match
87
88 n = data.size();
89 b.resize(n);
90 c.resize(n);
91 d.resize(n);
92
93 // make sure we are monotonically increasing in x:
94
95 bool sorted = true;
96
97 for (int i = 1; i < n; i++) {
98 if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false;
99 }
100
101 // sort if necessary
102
103 if (!sorted) sort(data.begin(), data.end());
104
105 // Calculate coefficients for the tridiagonal system: store
106 // sub-diagonal in B, diagonal in D, difference quotient in C.
107
108 b[0] = data[1].first - data[0].first;
109 c[0] = (data[1].second - data[0].second) / b[0];
110
111 if (n == 2) {
112
113 // Assume the derivatives at both endpoints are zero. Another
114 // assumption could be made to have a linear interpolant between
115 // the two points. In that case, the b coefficients below would be
116 // (data[1].second - data[0].second) / (data[1].first - data[0].first)
117 // and the c and d coefficients would both be zero.
118 b[0] = 0.0;
119 c[0] = -3.0 * pow((data[1].second - data[0].second) /
120 (data[1].first-data[0].first), 2);
121 d[0] = -2.0 * pow((data[1].second - data[0].second) /
122 (data[1].first-data[0].first), 3);
123 b[1] = b[0];
124 c[1] = 0.0;
125 d[1] = 0.0;
126 dx = 1.0 / (data[1].first - data[0].first);
127 isUniform = true;
128 generated = true;
129 return;
130 }
131
132 d[0] = 2.0 * b[0];
133
134 for (int i = 1; i < n-1; i++) {
135 b[i] = data[i+1].first - data[i].first;
136 if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false;
137 c[i] = (data[i+1].second - data[i].second) / b[i];
138 d[i] = 2.0 * (b[i] + b[i-1]);
139 }
140
141 d[n-1] = 2.0 * b[n-2];
142
143 // Calculate estimates for the end slopes using polynomials
144 // that interpolate the data nearest the end.
145
146 fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]);
147 if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) /
148 (b[1] + b[2]) -
149 c[1] + c[0]) / (data[3].first - data[0].first);
150
151 fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]);
152
153 if (n > 3) fpn = fpn + b[n-2] *
154 (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) *
155 (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first);
156
157
158 // Calculate the right hand side and store it in C.
159
160 c[n-1] = 3.0 * (fpn - c[n-2]);
161 for (int i = n-2; i > 0; i--)
162 c[i] = 3.0 * (c[i] - c[i-1]);
163 c[0] = 3.0 * (c[0] - fp1);
164
165 // Solve the tridiagonal system.
166
167 for (int k = 1; k < n; k++) {
168 p = b[k-1] / d[k-1];
169 d[k] = d[k] - p*b[k-1];
170 c[k] = c[k] - p*c[k-1];
171 }
172
173 c[n-1] = c[n-1] / d[n-1];
174
175 for (int k = n-2; k >= 0; k--)
176 c[k] = (c[k] - b[k] * c[k+1]) / d[k];
177
178 // Calculate the coefficients defining the spline.
179
180 for (int i = 0; i < n-1; i++) {
181 h = data[i+1].first - data[i].first;
182 d[i] = (c[i+1] - c[i]) / (3.0 * h);
183 b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]);
184 }
185
186 b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]);
187
188 if (isUniform) dx = 1.0 / (data[1].first - data[0].first);
189
190 generated = true;
191 return;
192 }
193
194 RealType CubicSpline::getValueAt(RealType t) {
195 // Evaluate the spline at t using coefficients
196 //
197 // Input parameters
198 // t = point where spline is to be evaluated.
199 // Output:
200 // value of spline at t.
201
202 if (!generated) generate();
203 RealType dt;
204
205 if ( t < data[0].first || t > data[n-1].first ) {
206 sprintf( painCave.errMsg,
207 "CubicSpline::getValueAt was passed a value outside the range of the spline!\n");
208 painCave.severity = OPENMD_ERROR;
209 painCave.isFatal = 1;
210 simError();
211 }
212
213 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
214 // to t.
215
216 int j;
217
218 if (isUniform) {
219
220 j = max(0, min(n-1, int((t - data[0].first) * dx)));
221
222 } else {
223
224 j = n-1;
225
226 for (int i = 0; i < n; i++) {
227 if ( t < data[i].first ) {
228 j = i-1;
229 break;
230 }
231 }
232 }
233
234 // Evaluate the cubic polynomial.
235
236 dt = t - data[j].first;
237 return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j]));
238
239 }
240
241
242 pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) {
243 // Evaluate the spline and first derivative at t using coefficients
244 //
245 // Input parameters
246 // t = point where spline is to be evaluated.
247 // Output:
248 // pair containing value of spline at t and first derivative at t
249
250 if (!generated) generate();
251 RealType dt;
252
253 if ( t < data.front().first || t > data.back().first ) {
254 sprintf( painCave.errMsg,
255 "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n");
256 painCave.severity = OPENMD_ERROR;
257 painCave.isFatal = 1;
258 simError();
259 }
260
261 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
262 // to t.
263
264 int j;
265
266 if (isUniform) {
267
268 j = max(0, min(n-1, int((t - data[0].first) * dx)));
269
270 } else {
271
272 j = n-1;
273
274 for (int i = 0; i < n; i++) {
275 if ( t < data[i].first ) {
276 j = i-1;
277 break;
278 }
279 }
280 }
281
282 // Evaluate the cubic polynomial.
283
284 dt = t - data[j].first;
285
286 RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j]));
287 RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]);
288
289 return make_pair(yval, dydx);
290 }

Properties

Name Value
svn:eol-style native