1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include "math/CubicSpline.hpp" |
43 |
#include "utils/simError.h" |
44 |
#include <cmath> |
45 |
#include <algorithm> |
46 |
#include <iostream> |
47 |
|
48 |
using namespace OpenMD; |
49 |
using namespace std; |
50 |
|
51 |
CubicSpline::CubicSpline() : generated(false), isUniform(true) {} |
52 |
|
53 |
void CubicSpline::addPoint(RealType xp, RealType yp) { |
54 |
data.push_back(make_pair(xp, yp)); |
55 |
} |
56 |
|
57 |
void CubicSpline::addPoints(const vector<RealType>& xps, |
58 |
const vector<RealType>& yps) { |
59 |
|
60 |
if (xps.size() != yps.size()) { |
61 |
printf( painCave.errMsg, |
62 |
"CubicSpline::addPoints was passed vectors of different length!\n"); |
63 |
painCave.severity = OPENMD_ERROR; |
64 |
painCave.isFatal = 1; |
65 |
simError(); |
66 |
} |
67 |
|
68 |
for (int i = 0; i < xps.size(); i++) |
69 |
data.push_back(make_pair(xps[i], yps[i])); |
70 |
} |
71 |
|
72 |
void CubicSpline::generate() { |
73 |
// Calculate coefficients defining a smooth cubic interpolatory spline. |
74 |
// |
75 |
// class values constructed: |
76 |
// n = number of data points. |
77 |
// x = vector of independent variable values |
78 |
// y = vector of dependent variable values |
79 |
// b = vector of S'(x[i]) values. |
80 |
// c = vector of S"(x[i])/2 values. |
81 |
// d = vector of S'''(x[i]+)/6 values (i < n). |
82 |
// Local variables: |
83 |
|
84 |
RealType fp1, fpn, h, p; |
85 |
|
86 |
// make sure the sizes match |
87 |
|
88 |
n = data.size(); |
89 |
x.resize(n); |
90 |
y.resize(n); |
91 |
b.resize(n); |
92 |
c.resize(n); |
93 |
d.resize(n); |
94 |
|
95 |
// make sure we are monotonically increasing in x: |
96 |
|
97 |
bool sorted = true; |
98 |
|
99 |
for (int i = 1; i < n; i++) { |
100 |
if ( (data[i].first - data[i-1].first ) <= 0.0 ) sorted = false; |
101 |
} |
102 |
|
103 |
// sort if necessary |
104 |
|
105 |
if (!sorted) sort(data.begin(), data.end()); |
106 |
|
107 |
// Copy spline data out to separate arrays: |
108 |
|
109 |
for (int i = 0; i < n; i++) { |
110 |
x[i] = data[i].first; |
111 |
y[i] = data[i].second; |
112 |
} |
113 |
|
114 |
// Calculate coefficients for the tridiagonal system: store |
115 |
// sub-diagonal in B, diagonal in D, difference quotient in C. |
116 |
|
117 |
b[0] = data[1].first - data[0].first; |
118 |
c[0] = (data[1].second - data[0].second) / b[0]; |
119 |
|
120 |
if (n == 2) { |
121 |
|
122 |
// Assume the derivatives at both endpoints are zero. Another |
123 |
// assumption could be made to have a linear interpolant between |
124 |
// the two points. In that case, the b coefficients below would be |
125 |
// (data[1].second - data[0].second) / (data[1].first - data[0].first) |
126 |
// and the c and d coefficients would both be zero. |
127 |
b[0] = 0.0; |
128 |
c[0] = -3.0 * pow((data[1].second - data[0].second) / |
129 |
(data[1].first-data[0].first), 2); |
130 |
d[0] = -2.0 * pow((data[1].second - data[0].second) / |
131 |
(data[1].first-data[0].first), 3); |
132 |
b[1] = b[0]; |
133 |
c[1] = 0.0; |
134 |
d[1] = 0.0; |
135 |
dx = 1.0 / (data[1].first - data[0].first); |
136 |
isUniform = true; |
137 |
generated = true; |
138 |
return; |
139 |
} |
140 |
|
141 |
d[0] = 2.0 * b[0]; |
142 |
|
143 |
for (int i = 1; i < n-1; i++) { |
144 |
b[i] = data[i+1].first - data[i].first; |
145 |
if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; |
146 |
c[i] = (data[i+1].second - data[i].second) / b[i]; |
147 |
d[i] = 2.0 * (b[i] + b[i-1]); |
148 |
} |
149 |
|
150 |
d[n-1] = 2.0 * b[n-2]; |
151 |
|
152 |
// Calculate estimates for the end slopes using polynomials |
153 |
// that interpolate the data nearest the end. |
154 |
|
155 |
fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); |
156 |
if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / |
157 |
(b[1] + b[2]) - |
158 |
c[1] + c[0]) / (data[3].first - data[0].first); |
159 |
|
160 |
fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); |
161 |
|
162 |
if (n > 3) fpn = fpn + b[n-2] * |
163 |
(c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
164 |
(c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data[n-1].first - data[n-4].first); |
165 |
|
166 |
|
167 |
// Calculate the right hand side and store it in C. |
168 |
|
169 |
c[n-1] = 3.0 * (fpn - c[n-2]); |
170 |
for (int i = n-2; i > 0; i--) |
171 |
c[i] = 3.0 * (c[i] - c[i-1]); |
172 |
c[0] = 3.0 * (c[0] - fp1); |
173 |
|
174 |
// Solve the tridiagonal system. |
175 |
|
176 |
for (int k = 1; k < n; k++) { |
177 |
p = b[k-1] / d[k-1]; |
178 |
d[k] = d[k] - p*b[k-1]; |
179 |
c[k] = c[k] - p*c[k-1]; |
180 |
} |
181 |
|
182 |
c[n-1] = c[n-1] / d[n-1]; |
183 |
|
184 |
for (int k = n-2; k >= 0; k--) |
185 |
c[k] = (c[k] - b[k] * c[k+1]) / d[k]; |
186 |
|
187 |
// Calculate the coefficients defining the spline. |
188 |
|
189 |
for (int i = 0; i < n-1; i++) { |
190 |
h = data[i+1].first - data[i].first; |
191 |
d[i] = (c[i+1] - c[i]) / (3.0 * h); |
192 |
b[i] = (data[i+1].second - data[i].second)/h - h * (c[i] + h * d[i]); |
193 |
} |
194 |
|
195 |
b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); |
196 |
|
197 |
if (isUniform) dx = 1.0 / (data[1].first - data[0].first); |
198 |
|
199 |
generated = true; |
200 |
return; |
201 |
} |
202 |
|
203 |
RealType CubicSpline::getValueAt(RealType t) { |
204 |
// Evaluate the spline at t using coefficients |
205 |
// |
206 |
// Input parameters |
207 |
// t = point where spline is to be evaluated. |
208 |
// Output: |
209 |
// value of spline at t. |
210 |
|
211 |
if (!generated) generate(); |
212 |
RealType dt; |
213 |
|
214 |
if ( t < data[0].first || t > data[n-1].first ) { |
215 |
sprintf( painCave.errMsg, |
216 |
"CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); |
217 |
painCave.severity = OPENMD_ERROR; |
218 |
painCave.isFatal = 1; |
219 |
simError(); |
220 |
} |
221 |
|
222 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
223 |
// to t. |
224 |
|
225 |
int j; |
226 |
|
227 |
if (isUniform) { |
228 |
|
229 |
j = max(0, min(n-1, int((t - data[0].first) * dx))); |
230 |
|
231 |
} else { |
232 |
|
233 |
j = n-1; |
234 |
|
235 |
for (int i = 0; i < n; i++) { |
236 |
if ( t < data[i].first ) { |
237 |
j = i-1; |
238 |
break; |
239 |
} |
240 |
} |
241 |
} |
242 |
|
243 |
// Evaluate the cubic polynomial. |
244 |
|
245 |
dt = t - data[j].first; |
246 |
return data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
247 |
|
248 |
} |
249 |
|
250 |
|
251 |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
252 |
// Evaluate the spline and first derivative at t using coefficients |
253 |
// |
254 |
// Input parameters |
255 |
// t = point where spline is to be evaluated. |
256 |
// Output: |
257 |
// pair containing value of spline at t and first derivative at t |
258 |
|
259 |
if (!generated) generate(); |
260 |
RealType dt; |
261 |
|
262 |
if ( t < data.front().first || t > data.back().first ) { |
263 |
sprintf( painCave.errMsg, |
264 |
"CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); |
265 |
painCave.severity = OPENMD_ERROR; |
266 |
painCave.isFatal = 1; |
267 |
simError(); |
268 |
} |
269 |
|
270 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
271 |
// to t. |
272 |
|
273 |
int j; |
274 |
|
275 |
if (isUniform) { |
276 |
|
277 |
j = max(0, min(n-1, int((t - data[0].first) * dx))); |
278 |
|
279 |
} else { |
280 |
|
281 |
j = n-1; |
282 |
|
283 |
for (int i = 0; i < n; i++) { |
284 |
if ( t < data[i].first ) { |
285 |
j = i-1; |
286 |
break; |
287 |
} |
288 |
} |
289 |
} |
290 |
|
291 |
// Evaluate the cubic polynomial. |
292 |
|
293 |
dt = t - data[j].first; |
294 |
|
295 |
RealType yval = data[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
296 |
RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
297 |
|
298 |
return make_pair(yval, dydx); |
299 |
} |