1 |
gezelter |
1475 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
gezelter |
1665 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
gezelter |
1475 |
*/ |
42 |
|
|
|
43 |
|
|
#include "math/CubicSpline.hpp" |
44 |
|
|
#include <cmath> |
45 |
gezelter |
1849 |
#include <cassert> |
46 |
gezelter |
1618 |
#include <cstdio> |
47 |
gezelter |
1475 |
#include <algorithm> |
48 |
|
|
|
49 |
|
|
using namespace OpenMD; |
50 |
|
|
using namespace std; |
51 |
|
|
|
52 |
gezelter |
1536 |
CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
53 |
|
|
data_.clear(); |
54 |
|
|
} |
55 |
gezelter |
1475 |
|
56 |
gezelter |
1536 |
void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
57 |
|
|
data_.push_back(make_pair(xp, yp)); |
58 |
gezelter |
1475 |
} |
59 |
|
|
|
60 |
|
|
void CubicSpline::addPoints(const vector<RealType>& xps, |
61 |
|
|
const vector<RealType>& yps) { |
62 |
|
|
|
63 |
gezelter |
1849 |
assert(xps.size() == yps.size()); |
64 |
|
|
|
65 |
gezelter |
1767 |
for (unsigned int i = 0; i < xps.size(); i++) |
66 |
gezelter |
1536 |
data_.push_back(make_pair(xps[i], yps[i])); |
67 |
gezelter |
1475 |
} |
68 |
|
|
|
69 |
|
|
void CubicSpline::generate() { |
70 |
|
|
// Calculate coefficients defining a smooth cubic interpolatory spline. |
71 |
|
|
// |
72 |
|
|
// class values constructed: |
73 |
gezelter |
1536 |
// n = number of data_ points. |
74 |
gezelter |
1475 |
// x = vector of independent variable values |
75 |
|
|
// y = vector of dependent variable values |
76 |
|
|
// b = vector of S'(x[i]) values. |
77 |
|
|
// c = vector of S"(x[i])/2 values. |
78 |
|
|
// d = vector of S'''(x[i]+)/6 values (i < n). |
79 |
|
|
// Local variables: |
80 |
gezelter |
1536 |
|
81 |
gezelter |
1475 |
RealType fp1, fpn, h, p; |
82 |
|
|
|
83 |
|
|
// make sure the sizes match |
84 |
|
|
|
85 |
gezelter |
1536 |
n = data_.size(); |
86 |
gezelter |
1475 |
b.resize(n); |
87 |
|
|
c.resize(n); |
88 |
|
|
d.resize(n); |
89 |
|
|
|
90 |
|
|
// make sure we are monotonically increasing in x: |
91 |
|
|
|
92 |
|
|
bool sorted = true; |
93 |
|
|
|
94 |
|
|
for (int i = 1; i < n; i++) { |
95 |
gezelter |
1536 |
if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
96 |
gezelter |
1475 |
} |
97 |
|
|
|
98 |
|
|
// sort if necessary |
99 |
|
|
|
100 |
gezelter |
1536 |
if (!sorted) sort(data_.begin(), data_.end()); |
101 |
gezelter |
1475 |
|
102 |
|
|
// Calculate coefficients for the tridiagonal system: store |
103 |
|
|
// sub-diagonal in B, diagonal in D, difference quotient in C. |
104 |
|
|
|
105 |
gezelter |
1536 |
b[0] = data_[1].first - data_[0].first; |
106 |
|
|
c[0] = (data_[1].second - data_[0].second) / b[0]; |
107 |
gezelter |
1475 |
|
108 |
|
|
if (n == 2) { |
109 |
|
|
|
110 |
|
|
// Assume the derivatives at both endpoints are zero. Another |
111 |
|
|
// assumption could be made to have a linear interpolant between |
112 |
|
|
// the two points. In that case, the b coefficients below would be |
113 |
gezelter |
1536 |
// (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
114 |
gezelter |
1475 |
// and the c and d coefficients would both be zero. |
115 |
|
|
b[0] = 0.0; |
116 |
gezelter |
1536 |
c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
117 |
|
|
(data_[1].first-data_[0].first), 2); |
118 |
|
|
d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
119 |
|
|
(data_[1].first-data_[0].first), 3); |
120 |
gezelter |
1475 |
b[1] = b[0]; |
121 |
|
|
c[1] = 0.0; |
122 |
|
|
d[1] = 0.0; |
123 |
gezelter |
1536 |
dx = 1.0 / (data_[1].first - data_[0].first); |
124 |
gezelter |
1475 |
isUniform = true; |
125 |
|
|
generated = true; |
126 |
|
|
return; |
127 |
|
|
} |
128 |
|
|
|
129 |
|
|
d[0] = 2.0 * b[0]; |
130 |
|
|
|
131 |
|
|
for (int i = 1; i < n-1; i++) { |
132 |
gezelter |
1536 |
b[i] = data_[i+1].first - data_[i].first; |
133 |
gezelter |
1475 |
if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; |
134 |
gezelter |
1536 |
c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
135 |
gezelter |
1475 |
d[i] = 2.0 * (b[i] + b[i-1]); |
136 |
|
|
} |
137 |
|
|
|
138 |
|
|
d[n-1] = 2.0 * b[n-2]; |
139 |
|
|
|
140 |
|
|
// Calculate estimates for the end slopes using polynomials |
141 |
gezelter |
1536 |
// that interpolate the data_ nearest the end. |
142 |
gezelter |
1475 |
|
143 |
|
|
fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); |
144 |
|
|
if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / |
145 |
|
|
(b[1] + b[2]) - |
146 |
gezelter |
1536 |
c[1] + c[0]) / (data_[3].first - data_[0].first); |
147 |
gezelter |
1475 |
|
148 |
|
|
fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); |
149 |
gezelter |
1849 |
|
150 |
gezelter |
1475 |
if (n > 3) fpn = fpn + b[n-2] * |
151 |
gezelter |
1849 |
(c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
152 |
|
|
(c[n-3] - c[n-4])/(b[n-3] + b[n-4])) / |
153 |
|
|
(data_[n-1].first - data_[n-4].first); |
154 |
gezelter |
1475 |
|
155 |
|
|
// Calculate the right hand side and store it in C. |
156 |
|
|
|
157 |
|
|
c[n-1] = 3.0 * (fpn - c[n-2]); |
158 |
|
|
for (int i = n-2; i > 0; i--) |
159 |
|
|
c[i] = 3.0 * (c[i] - c[i-1]); |
160 |
|
|
c[0] = 3.0 * (c[0] - fp1); |
161 |
|
|
|
162 |
|
|
// Solve the tridiagonal system. |
163 |
|
|
|
164 |
|
|
for (int k = 1; k < n; k++) { |
165 |
|
|
p = b[k-1] / d[k-1]; |
166 |
|
|
d[k] = d[k] - p*b[k-1]; |
167 |
|
|
c[k] = c[k] - p*c[k-1]; |
168 |
|
|
} |
169 |
|
|
|
170 |
|
|
c[n-1] = c[n-1] / d[n-1]; |
171 |
|
|
|
172 |
|
|
for (int k = n-2; k >= 0; k--) |
173 |
|
|
c[k] = (c[k] - b[k] * c[k+1]) / d[k]; |
174 |
|
|
|
175 |
|
|
// Calculate the coefficients defining the spline. |
176 |
|
|
|
177 |
|
|
for (int i = 0; i < n-1; i++) { |
178 |
gezelter |
1536 |
h = data_[i+1].first - data_[i].first; |
179 |
gezelter |
1475 |
d[i] = (c[i+1] - c[i]) / (3.0 * h); |
180 |
gezelter |
1536 |
b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
181 |
gezelter |
1475 |
} |
182 |
|
|
|
183 |
|
|
b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); |
184 |
|
|
|
185 |
gezelter |
1536 |
if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
186 |
gezelter |
1475 |
|
187 |
|
|
generated = true; |
188 |
|
|
return; |
189 |
|
|
} |
190 |
|
|
|
191 |
|
|
RealType CubicSpline::getValueAt(RealType t) { |
192 |
|
|
// Evaluate the spline at t using coefficients |
193 |
|
|
// |
194 |
|
|
// Input parameters |
195 |
|
|
// t = point where spline is to be evaluated. |
196 |
|
|
// Output: |
197 |
|
|
// value of spline at t. |
198 |
|
|
|
199 |
|
|
if (!generated) generate(); |
200 |
|
|
|
201 |
gezelter |
1849 |
assert(t < data_.front().first); |
202 |
|
|
assert(t > data_.back().first); |
203 |
gezelter |
1475 |
|
204 |
|
|
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
205 |
|
|
// to t. |
206 |
|
|
|
207 |
|
|
if (isUniform) { |
208 |
|
|
|
209 |
gezelter |
1536 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
210 |
gezelter |
1475 |
|
211 |
|
|
} else { |
212 |
|
|
|
213 |
|
|
j = n-1; |
214 |
|
|
|
215 |
|
|
for (int i = 0; i < n; i++) { |
216 |
gezelter |
1536 |
if ( t < data_[i].first ) { |
217 |
gezelter |
1475 |
j = i-1; |
218 |
|
|
break; |
219 |
|
|
} |
220 |
|
|
} |
221 |
|
|
} |
222 |
|
|
|
223 |
|
|
// Evaluate the cubic polynomial. |
224 |
|
|
|
225 |
gezelter |
1536 |
dt = t - data_[j].first; |
226 |
gezelter |
1849 |
return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
227 |
gezelter |
1475 |
} |
228 |
|
|
|
229 |
|
|
|
230 |
|
|
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
231 |
|
|
// Evaluate the spline and first derivative at t using coefficients |
232 |
|
|
// |
233 |
|
|
// Input parameters |
234 |
|
|
// t = point where spline is to be evaluated. |
235 |
|
|
// Output: |
236 |
|
|
// pair containing value of spline at t and first derivative at t |
237 |
|
|
|
238 |
|
|
if (!generated) generate(); |
239 |
|
|
|
240 |
gezelter |
1849 |
assert(t < data_.front().first); |
241 |
|
|
assert(t > data_.back().first); |
242 |
gezelter |
1475 |
|
243 |
|
|
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
244 |
|
|
// to t. |
245 |
|
|
|
246 |
|
|
if (isUniform) { |
247 |
|
|
|
248 |
gezelter |
1536 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
249 |
gezelter |
1475 |
|
250 |
|
|
} else { |
251 |
|
|
|
252 |
|
|
j = n-1; |
253 |
|
|
|
254 |
|
|
for (int i = 0; i < n; i++) { |
255 |
gezelter |
1536 |
if ( t < data_[i].first ) { |
256 |
gezelter |
1475 |
j = i-1; |
257 |
|
|
break; |
258 |
|
|
} |
259 |
|
|
} |
260 |
|
|
} |
261 |
|
|
|
262 |
|
|
// Evaluate the cubic polynomial. |
263 |
|
|
|
264 |
gezelter |
1536 |
dt = t - data_[j].first; |
265 |
gezelter |
1475 |
|
266 |
gezelter |
1849 |
yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
267 |
|
|
dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
268 |
gezelter |
1475 |
|
269 |
|
|
return make_pair(yval, dydx); |
270 |
|
|
} |