6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
+ |
|
43 |
+ |
#include "math/Vector.hpp" |
44 |
+ |
|
45 |
|
#ifndef MATH_CHOLESKYDECOMPOSITION_HPP |
46 |
|
#define MATH_CHOLESKYDECOMPOSITION_HPP |
47 |
|
|
48 |
< |
namespace oopse { |
49 |
< |
template<class MatrixType> |
50 |
< |
int CholeskyDecomposition(MatrixType& A, MatrixType& L) { |
48 |
> |
using namespace std; |
49 |
> |
namespace OpenMD { |
50 |
> |
|
51 |
> |
template<class MatrixType> |
52 |
> |
void CholeskyDecomposition(MatrixType& A, MatrixType& L) { |
53 |
> |
|
54 |
|
int n = A.getNRow(); |
55 |
< |
assert(n == A.getNCol() && n == L.getNRow()&& n==L.getNCol()); |
56 |
< |
for(int i = 0; i < n; ++i) { |
57 |
< |
double sum1 = 0; |
58 |
< |
for (int k = 0; k < i -1; ++k) { |
59 |
< |
sum1 +=L(i,k)*L(i,k); |
55 |
> |
assert(n == A.getNCol() && n == L.getNRow() && n == L.getNCol()); |
56 |
> |
|
57 |
> |
bool isspd(true); |
58 |
> |
RealType eps = A.diagonals().abs().max() * |
59 |
> |
(numeric_limits<RealType>::epsilon())/100; |
60 |
> |
|
61 |
> |
|
62 |
> |
for(int j = 0; j < n; j++) { |
63 |
> |
RealType d(0.0); |
64 |
> |
for (int k = 0; k < j; k++) { |
65 |
> |
RealType s(0.0); |
66 |
> |
|
67 |
> |
for (int i = 0; i < k; i++) { |
68 |
> |
s += L(k,i) * L(j,i); |
69 |
|
} |
70 |
< |
L(i, i) = sqrt(A(i, i) - sum1); |
71 |
< |
for (int j = i+1; j < n; ++j) { |
72 |
< |
double sum2 = 0; |
73 |
< |
for (int k = 0; k < i-1; ++k) { |
74 |
< |
sum2 += L(j ,k)*L(i, k); |
75 |
< |
} |
76 |
< |
A(j, i) = (A(j, i) - sum2) /L(i,i); |
70 |
> |
|
71 |
> |
// if L(k,k) != 0 |
72 |
> |
if (std::abs(L(k,k)) > eps) { |
73 |
> |
s = (A(j,k) - s) / L(k,k); |
74 |
> |
} else { |
75 |
> |
s = (A(j,k) -s); |
76 |
> |
isspd = false; |
77 |
|
} |
78 |
+ |
L(j,k) = s; |
79 |
+ |
d = d + s*s; |
80 |
+ |
|
81 |
+ |
// this is approximately doing: isspd = isspd && ( A(k,j) == A(j,k) ) |
82 |
+ |
isspd = isspd && (abs(A(k,j) - A(j,k)) < eps ); |
83 |
+ |
} |
84 |
+ |
d = A(j,j) - d; |
85 |
+ |
isspd = isspd && (d > eps); |
86 |
+ |
L(j,j) = sqrt(d > 0.0 ? d : 0.0); |
87 |
+ |
for (int k = j+1; k < n; k++) { |
88 |
+ |
L(j,k) = 0.0; |
89 |
+ |
} |
90 |
|
} |
91 |
< |
|
64 |
< |
return 0; |
65 |
< |
|
91 |
> |
} |
92 |
|
} |
93 |
|
|
68 |
– |
|
69 |
– |
} |
70 |
– |
|
94 |
|
#endif |