1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ChebyshevPolynomials.hpp |
44 |
* @author teng lin |
45 |
* @date 11/16/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP |
50 |
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
51 |
|
52 |
#include <vector> |
53 |
#include <cassert> |
54 |
|
55 |
#include "math/Polynomial.hpp" |
56 |
|
57 |
namespace OpenMD { |
58 |
|
59 |
/** |
60 |
* @class ChebyshevPolynomials |
61 |
* A collection of Chebyshev Polynomials. |
62 |
* @todo document |
63 |
*/ |
64 |
class ChebyshevPolynomials { |
65 |
public: |
66 |
ChebyshevPolynomials(int maxPower); |
67 |
virtual ~ChebyshevPolynomials() {} |
68 |
/** |
69 |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
70 |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
71 |
* @param n |
72 |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
*/ |
74 |
|
75 |
RealType evaluate(int n, RealType x) { |
76 |
assert (n <= maxPower_ && n >=0); |
77 |
return polyList_[n].evaluate(x); |
78 |
} |
79 |
|
80 |
/** |
81 |
* Returns the first derivative of the nth Chebyshev Polynomial. |
82 |
* @return the first derivative of the nth Chebyshev Polynomial |
83 |
* @param n |
84 |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
*/ |
86 |
RealType evaluateDerivative(int n, RealType x) { |
87 |
assert (n <= maxPower_ && n >=0); |
88 |
return polyList_[n].evaluateDerivative(x); |
89 |
} |
90 |
|
91 |
/** |
92 |
* Returns the nth Chebyshev Polynomial |
93 |
* @return the nth Chebyshev Polynomial |
94 |
* @param n |
95 |
*/ |
96 |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
97 |
assert (n <= maxPower_ && n >=0); |
98 |
return polyList_[n]; |
99 |
} |
100 |
|
101 |
protected: |
102 |
|
103 |
std::vector<DoublePolynomial> polyList_; |
104 |
void GeneratePolynomials(int maxPower); |
105 |
|
106 |
private: |
107 |
|
108 |
virtual void GenerateFirstTwoTerms() = 0; |
109 |
|
110 |
int maxPower_; |
111 |
}; |
112 |
/* |
113 |
/** |
114 |
* @class ChebyshevT |
115 |
* @todo document |
116 |
*/ |
117 |
class ChebyshevT : public ChebyshevPolynomials { |
118 |
public: |
119 |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
120 |
|
121 |
private: |
122 |
virtual void GenerateFirstTwoTerms(); |
123 |
}; |
124 |
|
125 |
/** |
126 |
* @class ChebyshevU |
127 |
* @todo document |
128 |
*/ |
129 |
class ChebyshevU : public ChebyshevPolynomials { |
130 |
public: |
131 |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
132 |
|
133 |
private: |
134 |
virtual void GenerateFirstTwoTerms(); |
135 |
}; |
136 |
*/ |
137 |
|
138 |
} //end namespace OpenMD |
139 |
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |