1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
55 |
|
|
56 |
|
namespace oopse { |
57 |
|
|
58 |
< |
/** |
59 |
< |
* @class ChebyshevPolynomials |
60 |
< |
* A collection of Chebyshev Polynomials. |
61 |
< |
* @todo document |
62 |
< |
*/ |
63 |
< |
class ChebyshevPolynomials { |
64 |
< |
public: |
65 |
< |
ChebyshevPolynomials(int maxPower); |
66 |
< |
|
67 |
< |
/** |
68 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
69 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
70 |
< |
* @param n |
71 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
72 |
< |
*/ |
58 |
> |
/** |
59 |
> |
* @class ChebyshevPolynomials |
60 |
> |
* A collection of Chebyshev Polynomials. |
61 |
> |
* @todo document |
62 |
> |
*/ |
63 |
> |
class ChebyshevPolynomials { |
64 |
> |
public: |
65 |
> |
ChebyshevPolynomials(int maxPower); |
66 |
> |
virtual ~ChebyshevPolynomials() {} |
67 |
> |
/** |
68 |
> |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
69 |
> |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
70 |
> |
* @param n |
71 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
72 |
> |
*/ |
73 |
|
|
74 |
< |
double evaluate(int n, double x) { |
75 |
< |
assert (n <= maxPower_ && n >=0); |
76 |
< |
return polyList_[n].evaluate(x); |
77 |
< |
} |
74 |
> |
double evaluate(int n, double x) { |
75 |
> |
assert (n <= maxPower_ && n >=0); |
76 |
> |
return polyList_[n].evaluate(x); |
77 |
> |
} |
78 |
|
|
79 |
< |
/** |
80 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
81 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
82 |
< |
* @param n |
83 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
84 |
< |
*/ |
85 |
< |
double evaluateDerivative(int n, double x) { |
86 |
< |
assert (n <= maxPower_ && n >=0); |
87 |
< |
return polyList_[n].evaluateDerivative(x); |
88 |
< |
} |
79 |
> |
/** |
80 |
> |
* Returns the first derivative of the nth Chebyshev Polynomial. |
81 |
> |
* @return the first derivative of the nth Chebyshev Polynomial |
82 |
> |
* @param n |
83 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
84 |
> |
*/ |
85 |
> |
double evaluateDerivative(int n, double x) { |
86 |
> |
assert (n <= maxPower_ && n >=0); |
87 |
> |
return polyList_[n].evaluateDerivative(x); |
88 |
> |
} |
89 |
|
|
90 |
< |
/** |
91 |
< |
* Returns the nth Chebyshev Polynomial |
92 |
< |
* @return the nth Chebyshev Polynomial |
93 |
< |
* @param n |
94 |
< |
*/ |
95 |
< |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
96 |
< |
assert (n <= maxPower_ && n >=0); |
97 |
< |
return polyList_[n]; |
98 |
< |
} |
90 |
> |
/** |
91 |
> |
* Returns the nth Chebyshev Polynomial |
92 |
> |
* @return the nth Chebyshev Polynomial |
93 |
> |
* @param n |
94 |
> |
*/ |
95 |
> |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
96 |
> |
assert (n <= maxPower_ && n >=0); |
97 |
> |
return polyList_[n]; |
98 |
> |
} |
99 |
|
|
100 |
< |
protected: |
100 |
> |
protected: |
101 |
|
|
102 |
< |
std::vector<DoublePolynomial> polyList_; |
102 |
> |
std::vector<DoublePolynomial> polyList_; |
103 |
|
|
104 |
< |
private: |
104 |
> |
private: |
105 |
|
|
106 |
< |
void GeneratePolynomials(int maxPower); |
107 |
< |
virtual void GenerateFirstTwoTerms() = 0; |
106 |
> |
void GeneratePolynomials(int maxPower); |
107 |
> |
virtual void GenerateFirstTwoTerms() = 0; |
108 |
|
|
109 |
< |
int maxPower_; |
110 |
< |
}; |
109 |
> |
int maxPower_; |
110 |
> |
}; |
111 |
|
|
112 |
< |
/** |
113 |
< |
* @class ChebyshevT |
114 |
< |
* @todo document |
115 |
< |
*/ |
116 |
< |
class ChebyshevT : public ChebyshevPolynomials { |
117 |
< |
public: |
118 |
< |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
112 |
> |
/** |
113 |
> |
* @class ChebyshevT |
114 |
> |
* @todo document |
115 |
> |
*/ |
116 |
> |
class ChebyshevT : public ChebyshevPolynomials { |
117 |
> |
public: |
118 |
> |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
119 |
|
|
120 |
< |
private: |
121 |
< |
virtual void GenerateFirstTwoTerms(); |
122 |
< |
}; |
120 |
> |
private: |
121 |
> |
virtual void GenerateFirstTwoTerms(); |
122 |
> |
}; |
123 |
|
|
124 |
< |
/** |
125 |
< |
* @class ChebyshevU |
126 |
< |
* @todo document |
127 |
< |
*/ |
128 |
< |
class ChebyshevU : public ChebyshevPolynomials { |
129 |
< |
public: |
130 |
< |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
124 |
> |
/** |
125 |
> |
* @class ChebyshevU |
126 |
> |
* @todo document |
127 |
> |
*/ |
128 |
> |
class ChebyshevU : public ChebyshevPolynomials { |
129 |
> |
public: |
130 |
> |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
131 |
|
|
132 |
< |
private: |
133 |
< |
virtual void GenerateFirstTwoTerms(); |
134 |
< |
}; |
132 |
> |
private: |
133 |
> |
virtual void GenerateFirstTwoTerms(); |
134 |
> |
}; |
135 |
|
|
136 |
|
|
137 |
|
} //end namespace oopse |