1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
50 |
|
#define MATH_CHEBYSHEVPOLYNOMIALS_HPP |
51 |
|
|
52 |
|
#include <vector> |
53 |
+ |
#include <cassert> |
54 |
|
|
55 |
|
#include "math/Polynomial.hpp" |
56 |
|
|
57 |
< |
namespace oopse { |
57 |
> |
namespace OpenMD { |
58 |
|
|
59 |
< |
/** |
60 |
< |
* @class ChebyshevPolynomials |
61 |
< |
* A collection of Chebyshev Polynomials. |
62 |
< |
* @todo document |
63 |
< |
*/ |
64 |
< |
class ChebyshevPolynomials { |
65 |
< |
public: |
66 |
< |
ChebyshevPolynomials(int maxPower); |
67 |
< |
|
68 |
< |
/** |
69 |
< |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
70 |
< |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
71 |
< |
* @param n |
72 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
< |
*/ |
59 |
> |
/** |
60 |
> |
* @class ChebyshevPolynomials |
61 |
> |
* A collection of Chebyshev Polynomials. |
62 |
> |
* @todo document |
63 |
> |
*/ |
64 |
> |
class ChebyshevPolynomials { |
65 |
> |
public: |
66 |
> |
ChebyshevPolynomials(int maxPower); |
67 |
> |
virtual ~ChebyshevPolynomials() {} |
68 |
> |
/** |
69 |
> |
* Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value. |
70 |
> |
* @return The value of the nth Chebyshev Polynomial evaluates at the given x value |
71 |
> |
* @param n |
72 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
73 |
> |
*/ |
74 |
|
|
75 |
< |
double evaluate(int n, double x) { |
76 |
< |
assert (n <= maxPower_ && n >=0); |
77 |
< |
return polyList_[n].evaluate(x); |
78 |
< |
} |
75 |
> |
RealType evaluate(int n, RealType x) { |
76 |
> |
assert (n <= maxPower_ && n >=0); |
77 |
> |
return polyList_[n].evaluate(x); |
78 |
> |
} |
79 |
|
|
80 |
< |
/** |
81 |
< |
* Returns the first derivative of the nth Chebyshev Polynomial. |
82 |
< |
* @return the first derivative of the nth Chebyshev Polynomial |
83 |
< |
* @param n |
84 |
< |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
< |
*/ |
86 |
< |
double evaluateDerivative(int n, double x) { |
87 |
< |
assert (n <= maxPower_ && n >=0); |
88 |
< |
return polyList_[n].evaluateDerivative(x); |
89 |
< |
} |
80 |
> |
/** |
81 |
> |
* Returns the first derivative of the nth Chebyshev Polynomial. |
82 |
> |
* @return the first derivative of the nth Chebyshev Polynomial |
83 |
> |
* @param n |
84 |
> |
* @param x the value of the independent variable for the nth Chebyshev Polynomial function |
85 |
> |
*/ |
86 |
> |
RealType evaluateDerivative(int n, RealType x) { |
87 |
> |
assert (n <= maxPower_ && n >=0); |
88 |
> |
return polyList_[n].evaluateDerivative(x); |
89 |
> |
} |
90 |
|
|
91 |
< |
/** |
92 |
< |
* Returns the nth Chebyshev Polynomial |
93 |
< |
* @return the nth Chebyshev Polynomial |
94 |
< |
* @param n |
95 |
< |
*/ |
96 |
< |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
97 |
< |
assert (n <= maxPower_ && n >=0); |
98 |
< |
return polyList_[n]; |
99 |
< |
} |
91 |
> |
/** |
92 |
> |
* Returns the nth Chebyshev Polynomial |
93 |
> |
* @return the nth Chebyshev Polynomial |
94 |
> |
* @param n |
95 |
> |
*/ |
96 |
> |
const DoublePolynomial& getChebyshevPolynomial(int n) const { |
97 |
> |
assert (n <= maxPower_ && n >=0); |
98 |
> |
return polyList_[n]; |
99 |
> |
} |
100 |
|
|
101 |
< |
protected: |
101 |
> |
protected: |
102 |
|
|
103 |
< |
std::vector<DoublePolynomial> polyList_; |
103 |
> |
std::vector<DoublePolynomial> polyList_; |
104 |
> |
void GeneratePolynomials(int maxPower); |
105 |
|
|
106 |
< |
private: |
106 |
> |
private: |
107 |
|
|
108 |
< |
void GeneratePolynomials(int maxPower); |
107 |
< |
virtual void GenerateFirstTwoTerms() = 0; |
108 |
> |
virtual void GenerateFirstTwoTerms() = 0; |
109 |
|
|
110 |
< |
int maxPower_; |
111 |
< |
}; |
110 |
> |
int maxPower_; |
111 |
> |
}; |
112 |
> |
/* |
113 |
> |
/** |
114 |
> |
* @class ChebyshevT |
115 |
> |
* @todo document |
116 |
> |
*/ |
117 |
> |
class ChebyshevT : public ChebyshevPolynomials { |
118 |
> |
public: |
119 |
> |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
120 |
|
|
121 |
< |
/** |
122 |
< |
* @class ChebyshevT |
123 |
< |
* @todo document |
115 |
< |
*/ |
116 |
< |
class ChebyshevT : public ChebyshevPolynomials { |
117 |
< |
public: |
118 |
< |
ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {} |
121 |
> |
private: |
122 |
> |
virtual void GenerateFirstTwoTerms(); |
123 |
> |
}; |
124 |
|
|
125 |
< |
private: |
126 |
< |
virtual void GenerateFirstTwoTerms(); |
127 |
< |
}; |
125 |
> |
/** |
126 |
> |
* @class ChebyshevU |
127 |
> |
* @todo document |
128 |
> |
*/ |
129 |
> |
class ChebyshevU : public ChebyshevPolynomials { |
130 |
> |
public: |
131 |
> |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
132 |
|
|
133 |
< |
/** |
134 |
< |
* @class ChebyshevU |
135 |
< |
* @todo document |
136 |
< |
*/ |
128 |
< |
class ChebyshevU : public ChebyshevPolynomials { |
129 |
< |
public: |
130 |
< |
ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {} |
133 |
> |
private: |
134 |
> |
virtual void GenerateFirstTwoTerms(); |
135 |
> |
}; |
136 |
> |
*/ |
137 |
|
|
138 |
< |
private: |
133 |
< |
virtual void GenerateFirstTwoTerms(); |
134 |
< |
}; |
135 |
< |
|
136 |
< |
|
137 |
< |
} //end namespace oopse |
138 |
> |
} //end namespace OpenMD |
139 |
|
#endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP |