ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/ChebyshevPolynomials.hpp
(Generate patch)

Comparing trunk/src/math/ChebyshevPolynomials.hpp (file contents):
Revision 246 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 1195 by cpuglis, Thu Dec 6 20:04:02 2007 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 50 | Line 50
50   #define MATH_CHEBYSHEVPOLYNOMIALS_HPP
51  
52   #include <vector>
53 + #include <cassert>
54  
55   #include "math/Polynomial.hpp"
56  
57   namespace oopse {
58  
59 < /**
60 < * @class ChebyshevPolynomials
61 < * A collection of Chebyshev Polynomials.
62 < * @todo document
63 < */
64 < class ChebyshevPolynomials {
65 <    public:
66 <        ChebyshevPolynomials(int maxPower);
67 <
68 <        /**
69 <         * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value.
70 <         * @return The value of the nth Chebyshev Polynomial evaluates at the given x value
71 <         * @param n
72 <         * @param x the value of the independent variable for the nth Chebyshev Polynomial  function
73 <         */
59 >  /**
60 >   * @class ChebyshevPolynomials
61 >   * A collection of Chebyshev Polynomials.
62 >   * @todo document
63 >   */
64 >  class ChebyshevPolynomials {
65 >  public:
66 >    ChebyshevPolynomials(int maxPower);
67 >    virtual ~ChebyshevPolynomials() {}
68 >    /**
69 >     * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value.
70 >     * @return The value of the nth Chebyshev Polynomial evaluates at the given x value
71 >     * @param n
72 >     * @param x the value of the independent variable for the nth Chebyshev Polynomial  function
73 >     */
74          
75 <        double evaluate(int n, double x) {
76 <            assert (n <= maxPower_ && n >=0);
77 <            return polyList_[n].evaluate(x);
78 <        }
75 >    RealType evaluate(int n, RealType x) {
76 >      assert (n <= maxPower_ && n >=0);
77 >      return polyList_[n].evaluate(x);
78 >    }
79  
80 <        /**
81 <         * Returns the first derivative of the nth Chebyshev Polynomial.
82 <         * @return the first derivative of the nth Chebyshev Polynomial
83 <         * @param n
84 <         * @param x the value of the independent variable for the nth Chebyshev Polynomial  function
85 <         */
86 <        double evaluateDerivative(int n, double x) {
87 <            assert (n <= maxPower_ && n >=0);
88 <            return polyList_[n].evaluateDerivative(x);        
89 <        }
80 >    /**
81 >     * Returns the first derivative of the nth Chebyshev Polynomial.
82 >     * @return the first derivative of the nth Chebyshev Polynomial
83 >     * @param n
84 >     * @param x the value of the independent variable for the nth Chebyshev Polynomial  function
85 >     */
86 >    RealType evaluateDerivative(int n, RealType x) {
87 >      assert (n <= maxPower_ && n >=0);
88 >      return polyList_[n].evaluateDerivative(x);        
89 >    }
90  
91 <        /**
92 <         * Returns the nth Chebyshev Polynomial
93 <         * @return the nth Chebyshev Polynomial
94 <         * @param n
95 <         */
96 <        const DoublePolynomial& getChebyshevPolynomial(int n) const {
97 <            assert (n <= maxPower_ && n >=0);
98 <            return polyList_[n];
99 <        }
91 >    /**
92 >     * Returns the nth Chebyshev Polynomial
93 >     * @return the nth Chebyshev Polynomial
94 >     * @param n
95 >     */
96 >    const DoublePolynomial& getChebyshevPolynomial(int n) const {
97 >      assert (n <= maxPower_ && n >=0);
98 >      return polyList_[n];
99 >    }
100  
101 <    protected:
101 >  protected:
102  
103 <       std::vector<DoublePolynomial> polyList_;
103 >    std::vector<DoublePolynomial> polyList_;
104 >    void GeneratePolynomials(int maxPower);
105                  
106 <    private:
106 >  private:
107          
108 <        void GeneratePolynomials(int maxPower);
107 <        virtual void GenerateFirstTwoTerms() = 0;
108 >    virtual void GenerateFirstTwoTerms() = 0;
109          
110 <        int maxPower_;
111 < };    
110 >    int maxPower_;
111 >  };    
112 > /*
113 >  /**
114 >   * @class ChebyshevT
115 >   * @todo document
116 >   */
117 >  class ChebyshevT : public ChebyshevPolynomials {
118 >  public:
119 >    ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {}
120  
121 < /**
122 < * @class ChebyshevT
123 < * @todo document
115 < */
116 < class ChebyshevT : public ChebyshevPolynomials {
117 <    public:
118 <        ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {}
121 >  private:
122 >    virtual void GenerateFirstTwoTerms();
123 >  };
124  
125 <    private:
126 <        virtual void GenerateFirstTwoTerms();
127 < };
125 >  /**
126 >   * @class ChebyshevU
127 >   * @todo document
128 >   */
129 >  class ChebyshevU : public ChebyshevPolynomials {
130 >  public:
131 >    ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {}
132  
133 < /**
134 < * @class ChebyshevU
135 < * @todo document
136 < */
128 < class ChebyshevU : public ChebyshevPolynomials {
129 <    public:
130 <        ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {}
133 >  private:
134 >    virtual void GenerateFirstTwoTerms();
135 >  };
136 > */
137  
132    private:
133        virtual void GenerateFirstTwoTerms();
134 };
135
136
138   } //end namespace oopse
139   #endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines