ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/math/ChebyshevPolynomials.hpp
Revision: 1465
Committed: Fri Jul 9 23:08:25 2010 UTC (14 years, 9 months ago) by chuckv
File size: 4524 byte(s)
Log Message:
Creating busticated version of OpenMD

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42     /**
43     * @file ChebyshevPolynomials.hpp
44     * @author teng lin
45     * @date 11/16/2004
46     * @version 1.0
47     */
48    
49     #ifndef MATH_CHEBYSHEVPOLYNOMIALS_HPP
50     #define MATH_CHEBYSHEVPOLYNOMIALS_HPP
51    
52     #include <vector>
53 gezelter 809 #include <cassert>
54 gezelter 246
55     #include "math/Polynomial.hpp"
56    
57 gezelter 1390 namespace OpenMD {
58 gezelter 246
59 gezelter 507 /**
60     * @class ChebyshevPolynomials
61     * A collection of Chebyshev Polynomials.
62     * @todo document
63     */
64     class ChebyshevPolynomials {
65     public:
66     ChebyshevPolynomials(int maxPower);
67 tim 749 virtual ~ChebyshevPolynomials() {}
68 gezelter 507 /**
69     * Calculates the value of the nth Chebyshev Polynomial evaluated at the given x value.
70     * @return The value of the nth Chebyshev Polynomial evaluates at the given x value
71     * @param n
72     * @param x the value of the independent variable for the nth Chebyshev Polynomial function
73     */
74 gezelter 246
75 tim 963 RealType evaluate(int n, RealType x) {
76 gezelter 507 assert (n <= maxPower_ && n >=0);
77     return polyList_[n].evaluate(x);
78     }
79 gezelter 246
80 gezelter 507 /**
81     * Returns the first derivative of the nth Chebyshev Polynomial.
82     * @return the first derivative of the nth Chebyshev Polynomial
83     * @param n
84     * @param x the value of the independent variable for the nth Chebyshev Polynomial function
85     */
86 tim 963 RealType evaluateDerivative(int n, RealType x) {
87 gezelter 507 assert (n <= maxPower_ && n >=0);
88     return polyList_[n].evaluateDerivative(x);
89     }
90 gezelter 246
91 gezelter 507 /**
92     * Returns the nth Chebyshev Polynomial
93     * @return the nth Chebyshev Polynomial
94     * @param n
95     */
96     const DoublePolynomial& getChebyshevPolynomial(int n) const {
97     assert (n <= maxPower_ && n >=0);
98     return polyList_[n];
99     }
100 gezelter 246
101 gezelter 507 protected:
102 gezelter 246
103 gezelter 507 std::vector<DoublePolynomial> polyList_;
104 cpuglis 1195 void GeneratePolynomials(int maxPower);
105 gezelter 246
106 gezelter 507 private:
107 gezelter 246
108 gezelter 507 virtual void GenerateFirstTwoTerms() = 0;
109 gezelter 246
110 gezelter 507 int maxPower_;
111     };
112 cpuglis 1195 /*
113 gezelter 507 /**
114     * @class ChebyshevT
115     * @todo document
116     */
117     class ChebyshevT : public ChebyshevPolynomials {
118     public:
119     ChebyshevT(int maxPower) :ChebyshevPolynomials(maxPower) {}
120 gezelter 246
121 gezelter 507 private:
122     virtual void GenerateFirstTwoTerms();
123     };
124 gezelter 246
125 gezelter 507 /**
126     * @class ChebyshevU
127     * @todo document
128     */
129     class ChebyshevU : public ChebyshevPolynomials {
130     public:
131     ChebyshevU(int maxPower) :ChebyshevPolynomials(maxPower) {}
132 gezelter 246
133 gezelter 507 private:
134     virtual void GenerateFirstTwoTerms();
135     };
136 cpuglis 1195 */
137 gezelter 246
138 gezelter 1390 } //end namespace OpenMD
139 gezelter 246 #endif //MATH_CHEBYSHEVPOLYNOMIALS_HPP

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date