ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1752 by gezelter, Sun Jun 10 14:05:02 2012 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > #include "io/DumpWriter.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "utils/simError.h"
46 > #include "io/basic_teebuf.hpp"
47 > #include "io/gzstream.hpp"
48 > #include "io/Globals.hpp"
49  
4 #include <string.h>
5 #include <iostream>
6 #include <fstream>
7 #include <algorithm>
8 #include <utility>
50  
51   #ifdef IS_MPI
52   #include <mpi.h>
12 #include "brains/mpiSimulation.hpp"
13
14 namespace dWrite{
15  void DieDieDie( void );
16 }
17
18 using namespace dWrite;
53   #endif //is_mpi
54  
55 < #include "io/ReadWrite.hpp"
56 < #include "utils/simError.h"
55 > using namespace std;
56 > namespace OpenMD {
57  
58 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
58 >  DumpWriter::DumpWriter(SimInfo* info)
59 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
60  
61 <  entry_plug = the_entry_plug;
61 >    Globals* simParams = info->getSimParams();
62 >    needCompression_   = simParams->getCompressDumpFile();
63 >    needForceVector_   = simParams->getOutputForceVector();
64 >    needParticlePot_   = simParams->getOutputParticlePotential();
65 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
66 >    needElectricField_ = simParams->getOutputElectricField();
67  
68 +    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
69 +      doSiteData_ = true;
70 +    } else {
71 +      doSiteData_ = false;
72 +    }
73 +
74 +    createDumpFile_ = true;
75 + #ifdef HAVE_LIBZ
76 +    if (needCompression_) {
77 +      filename_ += ".gz";
78 +      eorFilename_ += ".gz";
79 +    }
80 + #endif
81 +    
82   #ifdef IS_MPI
83 <  if(worldRank == 0 ){
83 >
84 >    if (worldRank == 0) {
85   #endif // is_mpi
86 +        
87 +      dumpFile_ = createOStream(filename_);
88  
89 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
89 >      if (!dumpFile_) {
90 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
91 >                filename_.c_str());
92 >        painCave.isFatal = 1;
93 >        simError();
94 >      }
95  
96 <    if( !dumpFile ){
96 > #ifdef IS_MPI
97  
36      sprintf( painCave.errMsg,
37               "Could not open \"%s\" for dump output.\n",
38               entry_plug->sampleName.c_str());
39      painCave.isFatal = 1;
40      simError();
98      }
99  
100 < #ifdef IS_MPI
100 > #endif // is_mpi
101 >
102    }
103  
46  //sort the local atoms by global index
47  sortByGlobalIndex();
48  
49  sprintf( checkPointMsg,
50           "Sucessfully opened output file for dumping.\n");
51  MPIcheckPoint();
52 #endif // is_mpi
53 }
104  
105 < DumpWriter::~DumpWriter( ){
105 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
106 >    : info_(info), filename_(filename){
107  
108 < #ifdef IS_MPI
109 <  if(worldRank == 0 ){
59 < #endif // is_mpi
108 >    Globals* simParams = info->getSimParams();
109 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
110  
111 <    dumpFile.close();
111 >    needCompression_   = simParams->getCompressDumpFile();
112 >    needForceVector_   = simParams->getOutputForceVector();
113 >    needParticlePot_   = simParams->getOutputParticlePotential();
114 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
115 >    needElectricField_ = simParams->getOutputElectricField();
116  
117 +    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
118 +      doSiteData_ = true;
119 +    } else {
120 +      doSiteData_ = false;
121 +    }
122 +
123 +    createDumpFile_ = true;
124 + #ifdef HAVE_LIBZ
125 +    if (needCompression_) {
126 +      filename_ += ".gz";
127 +      eorFilename_ += ".gz";
128 +    }
129 + #endif
130 +    
131   #ifdef IS_MPI
132 <  }
132 >
133 >    if (worldRank == 0) {
134   #endif // is_mpi
66 }
135  
136 +      
137 +      dumpFile_ = createOStream(filename_);
138 +
139 +      if (!dumpFile_) {
140 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
141 +                filename_.c_str());
142 +        painCave.isFatal = 1;
143 +        simError();
144 +      }
145 +
146   #ifdef IS_MPI
147  
148 < /**
71 < * A hook function to load balancing
72 < */
148 >    }
149  
150 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
150 > #endif // is_mpi
151  
152 < /**
87 < * Sorting the local index by global index
88 < */
89 <
90 < void DumpWriter::sortByGlobalIndex(){
91 <  Molecule* mols = entry_plug->molecules;  
92 <  indexArray.clear();
152 >  }
153    
154 <  for(int i = 0; i < entry_plug->n_mol;i++)
155 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
156 <  
157 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
158 < }
154 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
155 >    : info_(info), filename_(filename){
156 >    
157 >    Globals* simParams = info->getSimParams();
158 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
159 >    
160 >    needCompression_   = simParams->getCompressDumpFile();
161 >    needForceVector_   = simParams->getOutputForceVector();
162 >    needParticlePot_   = simParams->getOutputParticlePotential();
163 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
164 >    needElectricField_ = simParams->getOutputElectricField();
165  
166 < #endif
166 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
167 >      doSiteData_ = true;
168 >    } else {
169 >      doSiteData_ = false;
170 >    }
171  
172 < void DumpWriter::writeDump(double currentTime){
173 <
174 <  ofstream finalOut;
175 <  vector<ofstream*> fileStreams;
106 <
107 < #ifdef IS_MPI
108 <  if(worldRank == 0 ){
109 < #endif    
110 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 <    if( !finalOut ){
112 <      sprintf( painCave.errMsg,
113 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
172 > #ifdef HAVE_LIBZ
173 >    if (needCompression_) {
174 >      filename_ += ".gz";
175 >      eorFilename_ += ".gz";
176      }
177 + #endif
178 +    
179   #ifdef IS_MPI
180 <  }
180 >    
181 >    if (worldRank == 0) {
182   #endif // is_mpi
183 +      
184 +      createDumpFile_ = writeDumpFile;
185 +      if (createDumpFile_) {
186 +        dumpFile_ = createOStream(filename_);
187 +      
188 +        if (!dumpFile_) {
189 +          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
190 +                  filename_.c_str());
191 +          painCave.isFatal = 1;
192 +          simError();
193 +        }
194 +      }
195 + #ifdef IS_MPI
196 +      
197 +    }
198  
199 <  fileStreams.push_back(&finalOut);
200 <  fileStreams.push_back(&dumpFile);
199 >    
200 > #endif // is_mpi
201 >    
202 >  }
203  
204 <  writeFrame(fileStreams, currentTime);
204 >  DumpWriter::~DumpWriter() {
205  
206   #ifdef IS_MPI
128  finalOut.close();
129 #endif
130        
131 }
207  
208 < void DumpWriter::writeFinal(double currentTime){
208 >    if (worldRank == 0) {
209 > #endif // is_mpi
210 >      if (createDumpFile_){
211 >        writeClosing(*dumpFile_);
212 >        delete dumpFile_;
213 >      }
214 > #ifdef IS_MPI
215  
216 <  ofstream finalOut;
136 <  vector<ofstream*> fileStreams;
216 >    }
217  
138 #ifdef IS_MPI
139  if(worldRank == 0 ){
218   #endif // is_mpi
219  
220 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
220 >  }
221  
222 <    if( !finalOut ){
222 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
223 >
224 >    char buffer[1024];
225 >
226 >    os << "    <FrameData>\n";
227 >
228 >    RealType currentTime = s->getTime();
229 >
230 >    if (isinf(currentTime) || isnan(currentTime)) {      
231        sprintf( painCave.errMsg,
232 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
232 >               "DumpWriter detected a numerical error writing the time");      
233        painCave.isFatal = 1;
234        simError();
235      }
236 +    
237 +    sprintf(buffer, "        Time: %.10g\n", currentTime);
238 +    os << buffer;
239  
240 < #ifdef IS_MPI
241 <  }
154 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
240 >    Mat3x3d hmat;
241 >    hmat = s->getHmat();
242  
243 < #ifdef IS_MPI
244 <  finalOut.close();
245 < #endif
246 <  
247 < }
243 >    for (unsigned int i = 0; i < 3; i++) {
244 >      for (unsigned int j = 0; j < 3; j++) {
245 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
246 >          sprintf( painCave.errMsg,
247 >                   "DumpWriter detected a numerical error writing the box");
248 >          painCave.isFatal = 1;
249 >          simError();
250 >        }        
251 >      }
252 >    }
253 >    
254 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
255 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
256 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
257 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
258 >    os << buffer;
259  
260 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
261 <
262 <  const int BUFFERSIZE = 2000;
263 <  const int MINIBUFFERSIZE = 100;
264 <
265 <  char tempBuffer[BUFFERSIZE];  
266 <  char writeLine[BUFFERSIZE];
267 <
268 <  int i;
269 <  unsigned int k;
260 >    RealType chi = s->getChi();
261 >    RealType integralOfChiDt = s->getIntegralOfChiDt();
262 >    if (isinf(chi) || isnan(chi) ||
263 >        isinf(integralOfChiDt) || isnan(integralOfChiDt)) {      
264 >      sprintf( painCave.errMsg,
265 >               "DumpWriter detected a numerical error writing the thermostat");
266 >      painCave.isFatal = 1;
267 >      simError();
268 >    }
269 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", chi, integralOfChiDt);
270 >    os << buffer;
271  
272 < #ifdef IS_MPI
273 <  
178 <  /*********************************************************************
179 <   * Documentation?  You want DOCUMENTATION?
180 <   *
181 <   * Why all the potatoes below?  
182 <   *
183 <   * To make a long story short, the original version of DumpWriter
184 <   * worked in the most inefficient way possible.  Node 0 would
185 <   * poke each of the node for an individual atom's formatted data
186 <   * as node 0 worked its way down the global index. This was particularly
187 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
272 >    Mat3x3d eta;
273 >    eta = s->getEta();
274  
275 <  int *potatoes;
276 <  int myPotato;
277 <
278 <  int nProc;
279 <  int j, which_node, done, which_atom, local_index, currentIndex;
280 <  double atomData[13];
281 <  int isDirectional;
282 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
263 <    
264 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
265 <      sd = *iter;
266 <      sd->getPos(pos);
267 <      sd->getVel(vel);
268 <
269 <      sprintf( tempBuffer,
270 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
271 <             sd->getType(),
272 <             pos[0],
273 <             pos[1],
274 <             pos[2],
275 <             vel[0],
276 <             vel[1],
277 <             vel[2]);
278 <      strcpy( writeLine, tempBuffer );
279 <
280 <      if( sd->isDirectional() ){
281 <
282 <        sd->getQ( q );
283 <        sd->getJ( ji );
284 <
285 <        sprintf( tempBuffer,
286 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
287 <               q[0],
288 <               q[1],
289 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
275 >    for (unsigned int i = 0; i < 3; i++) {
276 >      for (unsigned int j = 0; j < 3; j++) {
277 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
278 >          sprintf( painCave.errMsg,
279 >                   "DumpWriter detected a numerical error writing the barostat");
280 >          painCave.isFatal = 1;
281 >          simError();
282 >        }        
283        }
296      else
297        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298    
299      for(k = 0; k < outFile.size(); k++)
300        *outFile[k] << writeLine;      
284      }
285  
286 < }
286 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
287 >            eta(0, 0), eta(1, 0), eta(2, 0),
288 >            eta(0, 1), eta(1, 1), eta(2, 1),
289 >            eta(0, 2), eta(1, 2), eta(2, 2));
290 >    os << buffer;
291  
292 < #else // is_mpi
292 >    os << "    </FrameData>\n";
293 >  }
294  
295 <  /* code to find maximum tag value */
308 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
295 >  void DumpWriter::writeFrame(std::ostream& os) {
296  
297 <  int haveError;
297 > #ifdef IS_MPI
298 >    MPI_Status istatus;
299 > #endif
300  
301 <  MPI_Status istatus;
302 <  int nCurObj;
303 <  int *MolToProcMap = mpiSim->getMolToProcMap();
301 >    Molecule* mol;
302 >    StuntDouble* integrableObject;
303 >    SimInfo::MoleculeIterator mi;
304 >    Molecule::IntegrableObjectIterator ii;
305 >    RigidBody::AtomIterator ai;
306 >    Atom* atom;
307  
308 <  // write out header and node 0's coordinates
308 > #ifndef IS_MPI
309 >    os << "  <Snapshot>\n";
310 >
311 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
312  
313 <  if( worldRank == 0 ){
313 >    os << "    <StuntDoubles>\n";
314 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
315  
327    // Node 0 needs a list of the magic potatoes for each processor;
328
329    nProc = mpiSim->getNProcessors();
330    potatoes = new int[nProc];
331
332    //write out the comment lines
333    for (i = 0; i < nProc; i++)
334      potatoes[i] = 0;
335    
336      for(k = 0; k < outFile.size(); k++){
337        *outFile[k] << nTotObjects << "\n";
338
339        *outFile[k] << currentTime << ";\t"
340                         << entry_plug->Hmat[0][0] << "\t"
341                         << entry_plug->Hmat[1][0] << "\t"
342                         << entry_plug->Hmat[2][0] << ";\t"
343
344                         << entry_plug->Hmat[0][1] << "\t"
345                         << entry_plug->Hmat[1][1] << "\t"
346                         << entry_plug->Hmat[2][1] << ";\t"
347
348                         << entry_plug->Hmat[0][2] << "\t"
349                         << entry_plug->Hmat[1][2] << "\t"
350                         << entry_plug->Hmat[2][2] << ";";
351  
352        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
353    }
354
355    currentIndex = 0;
356
357    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
316        
317 <      // Get the Node number which has this atom;
318 <      
319 <      which_node = MolToProcMap[i];
362 <      
363 <      if (which_node != 0) {
364 <        
365 <        if (potatoes[which_node] + 1 >= MAXTAG) {
366 <          // The potato was going to exceed the maximum value,
367 <          // so wrap this processor potato back to 0:        
368 <
369 <          potatoes[which_node] = 0;          
370 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
317 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;  
318 >           integrableObject = mol->nextIntegrableObject(ii)) {  
319 >          os << prepareDumpLine(integrableObject);
320            
321 <        }
321 >      }
322 >    }    
323 >    os << "    </StuntDoubles>\n";
324  
325 <        myPotato = potatoes[which_node];        
325 >    if (doSiteData_) {
326 >      os << "    <SiteData>\n";
327 >      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
328 >              
329 >        for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;  
330 >           integrableObject = mol->nextIntegrableObject(ii)) {  
331  
332 <        //recieve the number of integrableObject in current molecule
333 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
334 <                 myPotato, MPI_COMM_WORLD, &istatus);
379 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
332 >          int ioIndex = integrableObject->getGlobalIntegrableObjectIndex();
333 >          // do one for the IO itself
334 >          os << prepareSiteLine(integrableObject, ioIndex, 0);
335  
336 <          if (potatoes[which_node] + 2 >= MAXTAG) {
384 <            // The potato was going to exceed the maximum value,
385 <            // so wrap this processor potato back to 0:        
386 <
387 <            potatoes[which_node] = 0;          
388 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
336 >          if (integrableObject->isRigidBody()) {
337              
338 +            RigidBody* rb = static_cast<RigidBody*>(integrableObject);
339 +            int siteIndex = 0;
340 +            for (atom = rb->beginAtom(ai); atom != NULL;  
341 +                 atom = rb->nextAtom(ai)) {                                            
342 +              os << prepareSiteLine(atom, ioIndex, siteIndex);
343 +              siteIndex++;
344 +            }
345            }
346 +        }
347 +      }    
348 +      os << "    </SiteData>\n";
349 +    }
350 +    os << "  </Snapshot>\n";
351  
352 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
353 <          myPotato, MPI_COMM_WORLD, &istatus);
352 >    os.flush();
353 > #else
354 >    //every node prepares the dump lines for integrable objects belong to itself
355 >    std::string buffer;
356 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
357  
395          atomTypeString = MPIatomTypeString;
358  
359 <          myPotato++;
359 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
360 >           integrableObject = mol->nextIntegrableObject(ii)) {  
361 >          buffer += prepareDumpLine(integrableObject);
362 >      }
363 >    }
364 >    
365 >    const int masterNode = 0;
366 >    int nProc;
367 >    MPI_Comm_size(MPI_COMM_WORLD, &nProc);
368 >    if (worldRank == masterNode) {      
369 >      os << "  <Snapshot>\n";  
370 >      writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
371 >      os << "    <StuntDoubles>\n";
372 >        
373 >      os << buffer;
374  
375 <          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
400 <          myPotato++;
375 >      for (int i = 1; i < nProc; ++i) {
376  
377 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
377 >        // receive the length of the string buffer that was
378 >        // prepared by processor i
379  
380 <          if(msgLen  == 13)
381 <            isDirectional = 1;
382 <          else
383 <            isDirectional = 0;
384 <          
385 <          // If we've survived to here, format the line:
386 <            
387 <          if (!isDirectional) {
388 <        
389 <            sprintf( writeLine,
390 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
391 <                 atomTypeString,
392 <                 atomData[0],
393 <                 atomData[1],
394 <                 atomData[2],
395 <                 atomData[3],
396 <                 atomData[4],
397 <                 atomData[5]);
398 <        
399 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
400 <        
401 <          }
402 <          else {
403 <        
404 <                sprintf( writeLine,
405 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
430 <                         atomTypeString,
431 <                         atomData[0],
432 <                         atomData[1],
433 <                         atomData[2],
434 <                         atomData[3],
435 <                         atomData[4],
436 <                         atomData[5],
437 <                         atomData[6],
438 <                         atomData[7],
439 <                         atomData[8],
440 <                         atomData[9],
441 <                         atomData[10],
442 <                         atomData[11],
443 <                         atomData[12]);
444 <            
445 <          }
446 <          
447 <          for(k = 0; k < outFile.size(); k++)
448 <            *outFile[k] << writeLine;            
380 >        MPI_Bcast(&i, 1, MPI_INT,masterNode,MPI_COMM_WORLD);
381 >        int recvLength;
382 >        MPI_Recv(&recvLength, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &istatus);
383 >        char* recvBuffer = new char[recvLength];
384 >        if (recvBuffer == NULL) {
385 >        } else {
386 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i, 0, MPI_COMM_WORLD, &istatus);
387 >          os << recvBuffer;
388 >          delete [] recvBuffer;
389 >        }
390 >      }
391 >      os << "    </StuntDoubles>\n";
392 >      
393 >      os << "  </Snapshot>\n";
394 >      os.flush();
395 >    } else {
396 >      int sendBufferLength = buffer.size() + 1;
397 >      int myturn = 0;
398 >      for (int i = 1; i < nProc; ++i){
399 >        MPI_Bcast(&myturn,1, MPI_INT,masterNode,MPI_COMM_WORLD);
400 >        if (myturn == worldRank){
401 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
402 >          MPI_Send((void *)buffer.c_str(), sendBufferLength, MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
403 >        }
404 >      }
405 >    }
406  
407 <        }// end for(int l =0)
451 <        potatoes[which_node] = myPotato;
407 > #endif // is_mpi
408  
409 <      }
454 <      else {
455 <        
456 <        haveError = 0;
457 <        
458 <            local_index = indexArray[currentIndex].first;        
409 >  }
410  
411 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
411 >  std::string DumpWriter::prepareDumpLine(StuntDouble* integrableObject) {
412 >        
413 >    int index = integrableObject->getGlobalIntegrableObjectIndex();
414 >    std::string type("pv");
415 >    std::string line;
416 >    char tempBuffer[4096];
417  
418 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
419 <                sd = *iter;
420 <            atomTypeString = sd->getType();
465 <            
466 <            sd->getPos(pos);
467 <            sd->getVel(vel);          
468 <          
469 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
418 >    Vector3d pos;
419 >    Vector3d vel;
420 >    pos = integrableObject->getPos();
421  
422 <            atomData[3] = vel[0];
423 <            atomData[4] = vel[1];
424 <            atomData[5] = vel[2];
425 <              
426 <            isDirectional = 0;
422 >    if (isinf(pos[0]) || isnan(pos[0]) ||
423 >        isinf(pos[1]) || isnan(pos[1]) ||
424 >        isinf(pos[2]) || isnan(pos[2]) ) {      
425 >      sprintf( painCave.errMsg,
426 >               "DumpWriter detected a numerical error writing the position"
427 >               " for object %d", index);      
428 >      painCave.isFatal = 1;
429 >      simError();
430 >    }
431  
432 <            if( sd->isDirectional() ){
432 >    vel = integrableObject->getVel();          
433  
434 <              isDirectional = 1;
435 <                
436 <              sd->getQ( q );
437 <              sd->getJ( ji );
434 >    if (isinf(vel[0]) || isnan(vel[0]) ||
435 >        isinf(vel[1]) || isnan(vel[1]) ||
436 >        isinf(vel[2]) || isnan(vel[2]) ) {      
437 >      sprintf( painCave.errMsg,
438 >               "DumpWriter detected a numerical error writing the velocity"
439 >               " for object %d", index);      
440 >      painCave.isFatal = 1;
441 >      simError();
442 >    }
443  
444 <              for (int j = 0; j < 6 ; j++)
445 <                atomData[j] = atomData[j];            
446 <              
447 <              atomData[6] = q[0];
448 <              atomData[7] = q[1];
449 <              atomData[8] = q[2];
450 <              atomData[9] = q[3];
451 <              
452 <              atomData[10] = ji[0];
453 <              atomData[11] = ji[1];
454 <              atomData[12] = ji[2];
455 <            }
456 <            
457 <            // If we've survived to here, format the line:
458 <            
459 <            if (!isDirectional) {
460 <        
461 <              sprintf( writeLine,
462 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
463 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
535 <            }
536 <            
537 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
444 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
445 >            pos[0], pos[1], pos[2],
446 >            vel[0], vel[1], vel[2]);                    
447 >    line += tempBuffer;
448 >
449 >    if (integrableObject->isDirectional()) {
450 >      type += "qj";
451 >      Quat4d q;
452 >      Vector3d ji;
453 >      q = integrableObject->getQ();
454 >
455 >      if (isinf(q[0]) || isnan(q[0]) ||
456 >          isinf(q[1]) || isnan(q[1]) ||
457 >          isinf(q[2]) || isnan(q[2]) ||
458 >          isinf(q[3]) || isnan(q[3]) ) {      
459 >        sprintf( painCave.errMsg,
460 >                 "DumpWriter detected a numerical error writing the quaternion"
461 >                 " for object %d", index);      
462 >        painCave.isFatal = 1;
463 >        simError();
464        }
465  
466 <    }//end for(i = 0; i < mpiSim->getNmol())
547 <    
548 <    for(k = 0; k < outFile.size(); k++)
549 <      outFile[k]->flush();
550 <    
551 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
553 <    
554 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
466 >      ji = integrableObject->getJ();
467  
468 <    // worldRank != 0, so I'm a remote node.  
468 >      if (isinf(ji[0]) || isnan(ji[0]) ||
469 >          isinf(ji[1]) || isnan(ji[1]) ||
470 >          isinf(ji[2]) || isnan(ji[2]) ) {      
471 >        sprintf( painCave.errMsg,
472 >                 "DumpWriter detected a numerical error writing the angular"
473 >                 " momentum for object %d", index);      
474 >        painCave.isFatal = 1;
475 >        simError();
476 >      }
477  
478 <    // Set my magic potato to 0:
478 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
479 >              q[0], q[1], q[2], q[3],
480 >              ji[0], ji[1], ji[2]);
481 >      line += tempBuffer;
482 >    }
483  
484 <    myPotato = 0;
485 <    currentIndex = 0;
486 <    
487 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
484 >    if (needForceVector_) {
485 >      type += "f";
486 >      Vector3d frc = integrableObject->getFrc();
487 >      if (isinf(frc[0]) || isnan(frc[0]) ||
488 >          isinf(frc[1]) || isnan(frc[1]) ||
489 >          isinf(frc[2]) || isnan(frc[2]) ) {      
490 >        sprintf( painCave.errMsg,
491 >                 "DumpWriter detected a numerical error writing the force"
492 >                 " for object %d", index);      
493 >        painCave.isFatal = 1;
494 >        simError();
495 >      }
496 >      sprintf(tempBuffer, " %13e %13e %13e",
497 >              frc[0], frc[1], frc[2]);
498 >      line += tempBuffer;
499        
500 <      // Am I the node which has this integrableObject?
501 <      
502 <      if (MolToProcMap[i] == worldRank) {
500 >      if (integrableObject->isDirectional()) {
501 >        type += "t";
502 >        Vector3d trq = integrableObject->getTrq();        
503 >        if (isinf(trq[0]) || isnan(trq[0]) ||
504 >            isinf(trq[1]) || isnan(trq[1]) ||
505 >            isinf(trq[2]) || isnan(trq[2]) ) {      
506 >          sprintf( painCave.errMsg,
507 >                   "DumpWriter detected a numerical error writing the torque"
508 >                   " for object %d", index);      
509 >          painCave.isFatal = 1;
510 >          simError();
511 >        }        
512 >        sprintf(tempBuffer, " %13e %13e %13e",
513 >                trq[0], trq[1], trq[2]);
514 >        line += tempBuffer;
515 >      }      
516 >    }
517  
518 +    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
519 +    return std::string(tempBuffer);
520 +  }
521  
522 <        if (myPotato + 1 >= MAXTAG) {
523 <          
576 <          // The potato was going to exceed the maximum value,
577 <          // so wrap this processor potato back to 0 (and block until
578 <          // node 0 says we can go:
579 <          
580 <          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
581 <          
582 <        }
522 >  std::string DumpWriter::prepareSiteLine(StuntDouble* integrableObject, int ioIndex, int siteIndex) {
523 >        
524  
525 <          local_index = indexArray[currentIndex].first;        
526 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
527 <          
528 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
525 >    std::string id;
526 >    std::string type;
527 >    std::string line;
528 >    char tempBuffer[4096];
529  
530 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
531 <
532 <            if (myPotato + 2 >= MAXTAG) {
533 <          
534 <              // The potato was going to exceed the maximum value,
535 <              // so wrap this processor potato back to 0 (and block until
536 <              // node 0 says we can go:
600 <          
601 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
530 >    if (integrableObject->isRigidBody()) {
531 >      sprintf(tempBuffer, "%10d           ", ioIndex);
532 >      id = std::string(tempBuffer);
533 >    } else {
534 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
535 >      id = std::string(tempBuffer);
536 >    }
537                
538 <            }
539 <            
540 <            sd = *iter;
541 <            
542 <            atomTypeString = sd->getType();
538 >    if (needFlucQ_) {
539 >      type += "cw";
540 >      RealType fqPos = integrableObject->getFlucQPos();
541 >      if (isinf(fqPos) || isnan(fqPos) ) {      
542 >        sprintf( painCave.errMsg,
543 >                 "DumpWriter detected a numerical error writing the"
544 >                 " fluctuating charge for object %s", id.c_str());      
545 >        painCave.isFatal = 1;
546 >        simError();
547 >      }
548 >      sprintf(tempBuffer, " %13e ", fqPos);
549 >      line += tempBuffer;
550 >    
551 >      RealType fqVel = integrableObject->getFlucQVel();
552 >      if (isinf(fqVel) || isnan(fqVel) ) {      
553 >        sprintf( painCave.errMsg,
554 >                 "DumpWriter detected a numerical error writing the"
555 >                 " fluctuating charge velocity for object %s", id.c_str());      
556 >        painCave.isFatal = 1;
557 >        simError();
558 >      }
559 >      sprintf(tempBuffer, " %13e ", fqVel);
560 >      line += tempBuffer;
561  
562 <            sd->getPos(pos);
563 <            sd->getVel(vel);
562 >      if (needForceVector_) {
563 >        type += "g";
564 >        RealType fqFrc = integrableObject->getFlucQFrc();        
565 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
566 >          sprintf( painCave.errMsg,
567 >                   "DumpWriter detected a numerical error writing the"
568 >                   " fluctuating charge force for object %s", id.c_str());      
569 >          painCave.isFatal = 1;
570 >          simError();
571 >        }
572 >        sprintf(tempBuffer, " %13e ", fqFrc);        
573 >        line += tempBuffer;
574 >      }
575 >    }
576  
577 <            atomData[0] = pos[0];
578 <            atomData[1] = pos[1];
579 <            atomData[2] = pos[2];
577 >    if (needElectricField_) {
578 >      type += "e";
579 >      Vector3d eField= integrableObject->getElectricField();
580 >      if (isinf(eField[0]) || isnan(eField[0]) ||
581 >          isinf(eField[1]) || isnan(eField[1]) ||
582 >          isinf(eField[2]) || isnan(eField[2]) ) {      
583 >        sprintf( painCave.errMsg,
584 >                 "DumpWriter detected a numerical error writing the electric"
585 >                 " field for object %s", id.c_str());      
586 >        painCave.isFatal = 1;
587 >        simError();
588 >      }
589 >      sprintf(tempBuffer, " %13e %13e %13e",
590 >              eField[0], eField[1], eField[2]);
591 >      line += tempBuffer;
592 >    }
593  
616            atomData[3] = vel[0];
617            atomData[4] = vel[1];
618            atomData[5] = vel[2];
619              
620            isDirectional = 0;
594  
595 <            if( sd->isDirectional() ){
595 >    if (needParticlePot_) {
596 >      type += "u";
597 >      RealType particlePot = integrableObject->getParticlePot();
598 >      if (isinf(particlePot) || isnan(particlePot)) {      
599 >        sprintf( painCave.errMsg,
600 >                 "DumpWriter detected a numerical error writing the particle "
601 >                 " potential for object %s", id.c_str());      
602 >        painCave.isFatal = 1;
603 >        simError();
604 >      }
605 >      sprintf(tempBuffer, " %13e", particlePot);
606 >      line += tempBuffer;
607 >    }
608 >    
609  
610 <                isDirectional = 1;
611 <                
612 <                sd->getQ( q );
627 <                sd->getJ( ji );
628 <                
629 <                
630 <                atomData[6] = q[0];
631 <                atomData[7] = q[1];
632 <                atomData[8] = q[2];
633 <                atomData[9] = q[3];
634 <      
635 <                atomData[10] = ji[0];
636 <                atomData[11] = ji[1];
637 <                atomData[12] = ji[2];
638 <              }
610 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
611 >    return std::string(tempBuffer);
612 >  }
613  
614 <            
615 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
614 >  void DumpWriter::writeDump() {
615 >    writeFrame(*dumpFile_);
616 >  }
617  
618 <            // null terminate the string before sending (just in case):
619 <            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
618 >  void DumpWriter::writeEor() {
619 >    std::ostream* eorStream;
620 >    
621 > #ifdef IS_MPI
622 >    if (worldRank == 0) {
623 > #endif // is_mpi
624  
625 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
647 <                             myPotato, MPI_COMM_WORLD);
648 <            
649 <            myPotato++;
650 <            
651 <            if (isDirectional) {
625 >      eorStream = createOStream(eorFilename_);
626  
627 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
628 <                       myPotato, MPI_COMM_WORLD);
629 <              
656 <            } else {
627 > #ifdef IS_MPI
628 >    }
629 > #endif // is_mpi    
630  
631 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
659 <                       myPotato, MPI_COMM_WORLD);
660 <            }
631 >    writeFrame(*eorStream);
632  
633 <            myPotato++;  
633 > #ifdef IS_MPI
634 >    if (worldRank == 0) {
635 > #endif // is_mpi
636 >      writeClosing(*eorStream);
637 >      delete eorStream;
638 > #ifdef IS_MPI
639 >    }
640 > #endif // is_mpi  
641  
642 <          }
642 >  }
643  
666          currentIndex++;    
667          
668        }
669      
670      }
644  
645 <    sprintf( checkPointMsg,
646 <             "Sucessfully took a dump.\n");
647 <    MPIcheckPoint();                
648 <    
645 >  void DumpWriter::writeDumpAndEor() {
646 >    std::vector<std::streambuf*> buffers;
647 >    std::ostream* eorStream;
648 > #ifdef IS_MPI
649 >    if (worldRank == 0) {
650 > #endif // is_mpi
651 >
652 >      buffers.push_back(dumpFile_->rdbuf());
653 >
654 >      eorStream = createOStream(eorFilename_);
655 >
656 >      buffers.push_back(eorStream->rdbuf());
657 >        
658 > #ifdef IS_MPI
659      }
660 + #endif // is_mpi    
661  
662 +    TeeBuf tbuf(buffers.begin(), buffers.end());
663 +    std::ostream os(&tbuf);
664  
665 <  
680 < #endif // is_mpi
681 < }
665 >    writeFrame(os);
666  
667   #ifdef IS_MPI
668 +    if (worldRank == 0) {
669 + #endif // is_mpi
670 +      writeClosing(*eorStream);
671 +      delete eorStream;
672 + #ifdef IS_MPI
673 +    }
674 + #endif // is_mpi  
675 +    
676 +  }
677  
678 < // a couple of functions to let us escape the write loop
678 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
679  
680 < void dWrite::DieDieDie( void ){
680 >    std::ostream* newOStream;
681 > #ifdef HAVE_LIBZ
682 >    if (needCompression_) {
683 >      newOStream = new ogzstream(filename.c_str());
684 >    } else {
685 >      newOStream = new std::ofstream(filename.c_str());
686 >    }
687 > #else
688 >    newOStream = new std::ofstream(filename.c_str());
689 > #endif
690 >    //write out MetaData first
691 >    (*newOStream) << "<OpenMD version=2>" << std::endl;
692 >    (*newOStream) << "  <MetaData>" << std::endl;
693 >    (*newOStream) << info_->getRawMetaData();
694 >    (*newOStream) << "  </MetaData>" << std::endl;
695 >    return newOStream;
696 >  }
697  
698 <  MPI_Finalize();
690 <  exit (0);
691 < }
698 >  void DumpWriter::writeClosing(std::ostream& os) {
699  
700 < #endif //is_mpi
700 >    os << "</OpenMD>\n";
701 >    os.flush();
702 >  }
703 >
704 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1752 by gezelter, Sun Jun 10 14:05:02 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines