ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1714 by gezelter, Sat May 19 18:12:46 2012 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include "io/DumpWriter.hpp"
# Line 46 | Line 47
47   #include "io/gzstream.hpp"
48   #include "io/Globals.hpp"
49  
50 +
51   #ifdef IS_MPI
52   #include <mpi.h>
53   #endif //is_mpi
54  
55 < namespace oopse {
55 > using namespace std;
56 > namespace OpenMD {
57  
58    DumpWriter::DumpWriter(SimInfo* info)
59      : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
60  
61      Globals* simParams = info->getSimParams();
62 <    needCompression_ = simParams->getCompressDumpFile();
63 <    needForceVector_ = simParams->getOutputForceVector();
62 >    needCompression_   = simParams->getCompressDumpFile();
63 >    needForceVector_   = simParams->getOutputForceVector();
64 >    needParticlePot_   = simParams->getOutputParticlePotential();
65 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
66 >    needElectricField_ = simParams->getOutputElectricField();
67  
68 +    createDumpFile_ = true;
69   #ifdef HAVE_LIBZ
70      if (needCompression_) {
71 <        filename_ += ".gz";
72 <        eorFilename_ += ".gz";
71 >      filename_ += ".gz";
72 >      eorFilename_ += ".gz";
73      }
74   #endif
75      
76   #ifdef IS_MPI
77  
78 <      if (worldRank == 0) {
78 >    if (worldRank == 0) {
79   #endif // is_mpi
80 +        
81 +      dumpFile_ = createOStream(filename_);
82  
83 +      if (!dumpFile_) {
84 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
85 +                filename_.c_str());
86 +        painCave.isFatal = 1;
87 +        simError();
88 +      }
89  
75        dumpFile_ = createOStream(filename_);
76
77        if (!dumpFile_) {
78          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
79                  filename_.c_str());
80          painCave.isFatal = 1;
81          simError();
82        }
83
90   #ifdef IS_MPI
91  
92 <      }
92 >    }
93  
88      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
89      MPIcheckPoint();
90
94   #endif // is_mpi
95  
96 <    }
96 >  }
97  
98  
99    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
# Line 99 | Line 102 | namespace oopse {
102      Globals* simParams = info->getSimParams();
103      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
104  
105 <    needCompression_ = simParams->getCompressDumpFile();
106 <    needForceVector_ = simParams->getOutputForceVector();
105 >    needCompression_   = simParams->getCompressDumpFile();
106 >    needForceVector_   = simParams->getOutputForceVector();
107 >    needParticlePot_   = simParams->getOutputParticlePotential();
108 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
109 >    needElectricField_ = simParams->getOutputElectricField();
110  
111 +    createDumpFile_ = true;
112   #ifdef HAVE_LIBZ
113      if (needCompression_) {
114 <        filename_ += ".gz";
115 <        eorFilename_ += ".gz";
114 >      filename_ += ".gz";
115 >      eorFilename_ += ".gz";
116      }
117   #endif
118      
119   #ifdef IS_MPI
120  
121 <      if (worldRank == 0) {
121 >    if (worldRank == 0) {
122   #endif // is_mpi
123  
124 +      
125 +      dumpFile_ = createOStream(filename_);
126  
127 <        dumpFile_ = createOStream(filename_);
127 >      if (!dumpFile_) {
128 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
129 >                filename_.c_str());
130 >        painCave.isFatal = 1;
131 >        simError();
132 >      }
133  
120        if (!dumpFile_) {
121          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
122                  filename_.c_str());
123          painCave.isFatal = 1;
124          simError();
125        }
126
134   #ifdef IS_MPI
135  
136 <      }
136 >    }
137  
131      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
132      MPIcheckPoint();
133
138   #endif // is_mpi
139  
140 +  }
141 +  
142 +  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
143 +    : info_(info), filename_(filename){
144 +    
145 +    Globals* simParams = info->getSimParams();
146 +    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
147 +    
148 +    needCompression_   = simParams->getCompressDumpFile();
149 +    needForceVector_   = simParams->getOutputForceVector();
150 +    needParticlePot_   = simParams->getOutputParticlePotential();
151 +    needFlucQ_         = simParams->getOutputFluctuatingCharges();
152 +    needElectricField_ = simParams->getOutputElectricField();
153 +
154 + #ifdef HAVE_LIBZ
155 +    if (needCompression_) {
156 +      filename_ += ".gz";
157 +      eorFilename_ += ".gz";
158      }
159 + #endif
160 +    
161 + #ifdef IS_MPI
162 +    
163 +    if (worldRank == 0) {
164 + #endif // is_mpi
165 +      
166 +      createDumpFile_ = writeDumpFile;
167 +      if (createDumpFile_) {
168 +        dumpFile_ = createOStream(filename_);
169 +      
170 +        if (!dumpFile_) {
171 +          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
172 +                  filename_.c_str());
173 +          painCave.isFatal = 1;
174 +          simError();
175 +        }
176 +      }
177 + #ifdef IS_MPI
178 +      
179 +    }
180  
181 +    
182 + #endif // is_mpi
183 +    
184 +  }
185 +
186    DumpWriter::~DumpWriter() {
187  
188   #ifdef IS_MPI
189  
190      if (worldRank == 0) {
191   #endif // is_mpi
192 <
193 <      delete dumpFile_;
194 <
192 >      if (createDumpFile_){
193 >        writeClosing(*dumpFile_);
194 >        delete dumpFile_;
195 >      }
196   #ifdef IS_MPI
197  
198      }
# Line 152 | Line 201 | namespace oopse {
201  
202    }
203  
204 <  void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
204 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
205  
206 <    double currentTime;
207 <    Mat3x3d hmat;
208 <    double chi;
209 <    double integralOfChiDt;
210 <    Mat3x3d eta;
206 >    char buffer[1024];
207 >
208 >    os << "    <FrameData>\n";
209 >
210 >    RealType currentTime = s->getTime();
211 >
212 >    if (isinf(currentTime) || isnan(currentTime)) {      
213 >      sprintf( painCave.errMsg,
214 >               "DumpWriter detected a numerical error writing the time");      
215 >      painCave.isFatal = 1;
216 >      simError();
217 >    }
218      
219 <    currentTime = s->getTime();
219 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
220 >    os << buffer;
221 >
222 >    Mat3x3d hmat;
223      hmat = s->getHmat();
224 <    chi = s->getChi();
225 <    integralOfChiDt = s->getIntegralOfChiDt();
226 <    eta = s->getEta();
224 >
225 >    for (unsigned int i = 0; i < 3; i++) {
226 >      for (unsigned int j = 0; j < 3; j++) {
227 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
228 >          sprintf( painCave.errMsg,
229 >                   "DumpWriter detected a numerical error writing the box");
230 >          painCave.isFatal = 1;
231 >          simError();
232 >        }        
233 >      }
234 >    }
235      
236 <    os << currentTime << ";\t"
237 <       << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
238 <       << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
239 <       << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
236 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
237 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
238 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
239 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
240 >    os << buffer;
241  
242 <    //write out additional parameters, such as chi and eta
242 >    RealType chi = s->getChi();
243 >    RealType integralOfChiDt = s->getIntegralOfChiDt();
244 >    if (isinf(chi) || isnan(chi) ||
245 >        isinf(integralOfChiDt) || isnan(integralOfChiDt)) {      
246 >      sprintf( painCave.errMsg,
247 >               "DumpWriter detected a numerical error writing the thermostat");
248 >      painCave.isFatal = 1;
249 >      simError();
250 >    }
251 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", chi, integralOfChiDt);
252 >    os << buffer;
253  
254 <    os << chi << "\t" << integralOfChiDt << "\t;";
254 >    Mat3x3d eta;
255 >    eta = s->getEta();
256  
257 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
258 <       << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
259 <       << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
260 <        
261 <    os << "\n";
257 >    for (unsigned int i = 0; i < 3; i++) {
258 >      for (unsigned int j = 0; j < 3; j++) {
259 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
260 >          sprintf( painCave.errMsg,
261 >                   "DumpWriter detected a numerical error writing the barostat");
262 >          painCave.isFatal = 1;
263 >          simError();
264 >        }        
265 >      }
266 >    }
267 >
268 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
269 >            eta(0, 0), eta(1, 0), eta(2, 0),
270 >            eta(0, 1), eta(1, 1), eta(2, 1),
271 >            eta(0, 2), eta(1, 2), eta(2, 2));
272 >    os << buffer;
273 >
274 >    os << "    </FrameData>\n";
275    }
276  
277    void DumpWriter::writeFrame(std::ostream& os) {
186    const int BUFFERSIZE = 2000;
187    const int MINIBUFFERSIZE = 100;
278  
279 <    char tempBuffer[BUFFERSIZE];
280 <    char writeLine[BUFFERSIZE];
279 > #ifdef IS_MPI
280 >    MPI_Status istatus;
281 > #endif
282  
192    Quat4d q;
193    Vector3d ji;
194    Vector3d pos;
195    Vector3d vel;
196    Vector3d frc;
197    Vector3d trq;
198
283      Molecule* mol;
284      StuntDouble* integrableObject;
285      SimInfo::MoleculeIterator mi;
286      Molecule::IntegrableObjectIterator ii;
203  
204    int nTotObjects;    
205    nTotObjects = info_->getNGlobalIntegrableObjects();
287  
288   #ifndef IS_MPI
289 +    os << "  <Snapshot>\n";
290 +
291 +    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
292  
293 +    os << "    <StuntDoubles>\n";
294 +    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
295  
296 <    os << nTotObjects << "\n";
297 <        
298 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
296 >      
297 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;  
298 >           integrableObject = mol->nextIntegrableObject(ii)) {  
299 >          os << prepareDumpLine(integrableObject);
300 >          
301 >      }
302 >    }    
303 >    os << "    </StuntDoubles>\n";
304 >    
305 >    os << "  </Snapshot>\n";
306  
307 +    os.flush();
308 + #else
309 +    //every node prepares the dump lines for integrable objects belong to itself
310 +    std::string buffer;
311      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
312  
313 +
314        for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
315 <           integrableObject = mol->nextIntegrableObject(ii)) {
316 <                
315 >           integrableObject = mol->nextIntegrableObject(ii)) {  
316 >          buffer += prepareDumpLine(integrableObject);
317 >      }
318 >    }
319 >    
320 >    const int masterNode = 0;
321 >    int nProc;
322 >    MPI_Comm_size(MPI_COMM_WORLD, &nProc);
323 >    if (worldRank == masterNode) {      
324 >      os << "  <Snapshot>\n";  
325 >      writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
326 >      os << "    <StuntDoubles>\n";
327 >        
328 >      os << buffer;
329  
330 <        pos = integrableObject->getPos();
221 <        vel = integrableObject->getVel();
330 >      for (int i = 1; i < nProc; ++i) {
331  
332 <        sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
333 <                integrableObject->getType().c_str(),
225 <                pos[0], pos[1], pos[2],
226 <                vel[0], vel[1], vel[2]);
332 >        // receive the length of the string buffer that was
333 >        // prepared by processor i
334  
335 <        strcpy(writeLine, tempBuffer);
335 >        MPI_Bcast(&i, 1, MPI_INT,masterNode,MPI_COMM_WORLD);
336 >        int recvLength;
337 >        MPI_Recv(&recvLength, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &istatus);
338 >        char* recvBuffer = new char[recvLength];
339 >        if (recvBuffer == NULL) {
340 >        } else {
341 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i, 0, MPI_COMM_WORLD, &istatus);
342 >          os << recvBuffer;
343 >          delete [] recvBuffer;
344 >        }
345 >      }
346 >      os << "    </StuntDoubles>\n";
347 >      
348 >      os << "  </Snapshot>\n";
349 >      os.flush();
350 >    } else {
351 >      int sendBufferLength = buffer.size() + 1;
352 >      int myturn = 0;
353 >      for (int i = 1; i < nProc; ++i){
354 >        MPI_Bcast(&myturn,1, MPI_INT,masterNode,MPI_COMM_WORLD);
355 >        if (myturn == worldRank){
356 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
357 >          MPI_Send((void *)buffer.c_str(), sendBufferLength, MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
358 >        }
359 >      }
360 >    }
361  
362 <        if (integrableObject->isDirectional()) {
231 <          q = integrableObject->getQ();
232 <          ji = integrableObject->getJ();
362 > #endif // is_mpi
363  
364 <          sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
235 <                  q[0], q[1], q[2], q[3],
236 <                  ji[0], ji[1], ji[2]);
237 <          strcat(writeLine, tempBuffer);
238 <        } else {
239 <          strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
240 <        }
364 >  }
365  
366 <        if (needForceVector_) {
243 <          frc = integrableObject->getFrc();
244 <          trq = integrableObject->getTrq();
245 <          
246 <          sprintf(tempBuffer, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
247 <                  frc[0], frc[1], frc[2],
248 <                  trq[0], trq[1], trq[2]);
249 <          strcat(writeLine, tempBuffer);
250 <        }
366 >  std::string DumpWriter::prepareDumpLine(StuntDouble* integrableObject) {
367          
368 <        strcat(writeLine, "\n");
369 <        os << writeLine;
368 >    int index = integrableObject->getGlobalIntegrableObjectIndex();
369 >    std::string type("pv");
370 >    std::string line;
371 >    char tempBuffer[4096];
372  
373 <      }
373 >    Vector3d pos;
374 >    Vector3d vel;
375 >    pos = integrableObject->getPos();
376 >
377 >    if (isinf(pos[0]) || isnan(pos[0]) ||
378 >        isinf(pos[1]) || isnan(pos[1]) ||
379 >        isinf(pos[2]) || isnan(pos[2]) ) {      
380 >      sprintf( painCave.errMsg,
381 >               "DumpWriter detected a numerical error writing the position"
382 >               " for object %d", index);      
383 >      painCave.isFatal = 1;
384 >      simError();
385      }
386  
387 <    os.flush();
259 < #else // is_mpi
260 <    /*********************************************************************
261 <     * Documentation?  You want DOCUMENTATION?
262 <     *
263 <     * Why all the potatoes below?  
264 <     *
265 <     * To make a long story short, the original version of DumpWriter
266 <     * worked in the most inefficient way possible.  Node 0 would
267 <     * poke each of the node for an individual atom's formatted data
268 <     * as node 0 worked its way down the global index. This was particularly
269 <     * inefficient since the method blocked all processors at every atom
270 <     * (and did it twice!).
271 <     *
272 <     * An intermediate version of DumpWriter could be described from Node
273 <     * zero's perspective as follows:
274 <     *
275 <     *  1) Have 100 of your friends stand in a circle.
276 <     *  2) When you say go, have all of them start tossing potatoes at
277 <     *     you (one at a time).
278 <     *  3) Catch the potatoes.
279 <     *
280 <     * It was an improvement, but MPI has buffers and caches that could
281 <     * best be described in this analogy as "potato nets", so there's no
282 <     * need to block the processors atom-by-atom.
283 <     *
284 <     * This new and improved DumpWriter works in an even more efficient
285 <     * way:
286 <     *
287 <     *  1) Have 100 of your friend stand in a circle.
288 <     *  2) When you say go, have them start tossing 5-pound bags of
289 <     *     potatoes at you.
290 <     *  3) Once you've caught a friend's bag of potatoes,
291 <     *     toss them a spud to let them know they can toss another bag.
292 <     *
293 <     * How's THAT for documentation?
294 <     *
295 <     *********************************************************************/
296 <    const int masterNode = 0;
387 >    vel = integrableObject->getVel();          
388  
389 <    int * potatoes;
390 <    int myPotato;
391 <    int nProc;
392 <    int which_node;
393 <    double atomData[19];
394 <    int isDirectional;
395 <    char MPIatomTypeString[MINIBUFFERSIZE];
396 <    int msgLen; // the length of message actually recieved at master nodes
306 <    int haveError;
307 <    MPI_Status istatus;
308 <    int nCurObj;
309 <    
310 <    // code to find maximum tag value
311 <    int * tagub;
312 <    int flag;
313 <    int MAXTAG;
314 <    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
315 <
316 <    if (flag) {
317 <      MAXTAG = *tagub;
318 <    } else {
319 <      MAXTAG = 32767;
389 >    if (isinf(vel[0]) || isnan(vel[0]) ||
390 >        isinf(vel[1]) || isnan(vel[1]) ||
391 >        isinf(vel[2]) || isnan(vel[2]) ) {      
392 >      sprintf( painCave.errMsg,
393 >               "DumpWriter detected a numerical error writing the velocity"
394 >               " for object %d", index);      
395 >      painCave.isFatal = 1;
396 >      simError();
397      }
398  
399 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
399 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
400 >            pos[0], pos[1], pos[2],
401 >            vel[0], vel[1], vel[2]);                    
402 >    line += tempBuffer;
403  
404 <      // Node 0 needs a list of the magic potatoes for each processor;
404 >    if (integrableObject->isDirectional()) {
405 >      type += "qj";
406 >      Quat4d q;
407 >      Vector3d ji;
408 >      q = integrableObject->getQ();
409  
410 <      MPI_Comm_size(MPI_COMM_WORLD, &nProc);
411 <      potatoes = new int[nProc];
412 <
413 <      //write out the comment lines
414 <      for(int i = 0; i < nProc; i++) {
415 <        potatoes[i] = 0;
410 >      if (isinf(q[0]) || isnan(q[0]) ||
411 >          isinf(q[1]) || isnan(q[1]) ||
412 >          isinf(q[2]) || isnan(q[2]) ||
413 >          isinf(q[3]) || isnan(q[3]) ) {      
414 >        sprintf( painCave.errMsg,
415 >                 "DumpWriter detected a numerical error writing the quaternion"
416 >                 " for object %d", index);      
417 >        painCave.isFatal = 1;
418 >        simError();
419        }
420  
421 +      ji = integrableObject->getJ();
422  
423 <      os << nTotObjects << "\n";
424 <      writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
423 >      if (isinf(ji[0]) || isnan(ji[0]) ||
424 >          isinf(ji[1]) || isnan(ji[1]) ||
425 >          isinf(ji[2]) || isnan(ji[2]) ) {      
426 >        sprintf( painCave.errMsg,
427 >                 "DumpWriter detected a numerical error writing the angular"
428 >                 " momentum for object %d", index);      
429 >        painCave.isFatal = 1;
430 >        simError();
431 >      }
432  
433 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
433 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
434 >              q[0], q[1], q[2], q[3],
435 >              ji[0], ji[1], ji[2]);
436 >      line += tempBuffer;
437 >    }
438  
439 <        // Get the Node number which has this atom;
440 <
441 <        which_node = info_->getMolToProc(i);
439 >    if (needForceVector_) {
440 >      type += "f";
441 >      Vector3d frc = integrableObject->getFrc();
442 >      if (isinf(frc[0]) || isnan(frc[0]) ||
443 >          isinf(frc[1]) || isnan(frc[1]) ||
444 >          isinf(frc[2]) || isnan(frc[2]) ) {      
445 >        sprintf( painCave.errMsg,
446 >                 "DumpWriter detected a numerical error writing the force"
447 >                 " for object %d", index);      
448 >        painCave.isFatal = 1;
449 >        simError();
450 >      }
451 >      sprintf(tempBuffer, " %13e %13e %13e",
452 >              frc[0], frc[1], frc[2]);
453 >      line += tempBuffer;
454 >      
455 >      if (integrableObject->isDirectional()) {
456 >        type += "t";
457 >        Vector3d trq = integrableObject->getTrq();        
458 >        if (isinf(trq[0]) || isnan(trq[0]) ||
459 >            isinf(trq[1]) || isnan(trq[1]) ||
460 >            isinf(trq[2]) || isnan(trq[2]) ) {      
461 >          sprintf( painCave.errMsg,
462 >                   "DumpWriter detected a numerical error writing the torque"
463 >                   " for object %d", index);      
464 >          painCave.isFatal = 1;
465 >          simError();
466 >        }        
467 >        sprintf(tempBuffer, " %13e %13e %13e",
468 >                trq[0], trq[1], trq[2]);
469 >        line += tempBuffer;
470 >      }      
471 >    }
472  
473 <        if (which_node != masterNode) { //current molecule is in slave node
474 <          if (potatoes[which_node] + 1 >= MAXTAG) {
475 <            // The potato was going to exceed the maximum value,
476 <            // so wrap this processor potato back to 0:        
473 >    if (needParticlePot_) {
474 >      type += "u";
475 >      RealType particlePot = integrableObject->getParticlePot();
476 >      if (isinf(particlePot) || isnan(particlePot)) {      
477 >        sprintf( painCave.errMsg,
478 >                 "DumpWriter detected a numerical error writing the particle "
479 >                 " potential for object %d", index);      
480 >        painCave.isFatal = 1;
481 >        simError();
482 >      }
483 >      sprintf(tempBuffer, " %13e", particlePot);
484 >      line += tempBuffer;
485 >    }
486 >    
487 >    if (needFlucQ_) {
488 >      type += "cw";
489 >      RealType fqPos = integrableObject->getFlucQPos();
490 >      if (isinf(fqPos) || isnan(fqPos) ) {      
491 >        sprintf( painCave.errMsg,
492 >                 "DumpWriter detected a numerical error writing the"
493 >                 " fluctuating charge for object %d", index);      
494 >        painCave.isFatal = 1;
495 >        simError();
496 >      }
497 >      sprintf(tempBuffer, " %13e ", fqPos);
498 >      line += tempBuffer;
499 >    
500 >      RealType fqVel = integrableObject->getFlucQVel();
501 >      if (isinf(fqVel) || isnan(fqVel) ) {      
502 >        sprintf( painCave.errMsg,
503 >                 "DumpWriter detected a numerical error writing the"
504 >                 " fluctuating charge velocity for object %d", index);      
505 >        painCave.isFatal = 1;
506 >        simError();
507 >      }
508 >      sprintf(tempBuffer, " %13e ", fqVel);
509 >      line += tempBuffer;
510  
511 <            potatoes[which_node] = 0;
512 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
513 <                     MPI_COMM_WORLD);
514 <          }
515 <
516 <          myPotato = potatoes[which_node];
517 <
518 <          //recieve the number of integrableObject in current molecule
519 <          MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
520 <                   MPI_COMM_WORLD, &istatus);
521 <          myPotato++;
522 <
523 <          for(int l = 0; l < nCurObj; l++) {
524 <            if (potatoes[which_node] + 2 >= MAXTAG) {
363 <              // The potato was going to exceed the maximum value,
364 <              // so wrap this processor potato back to 0:        
365 <
366 <              potatoes[which_node] = 0;
367 <              MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
368 <                       0, MPI_COMM_WORLD);
369 <            }
370 <
371 <            MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
372 <                     which_node, myPotato, MPI_COMM_WORLD,
373 <                     &istatus);
374 <
375 <            myPotato++;
376 <
377 <            MPI_Recv(atomData, 19, MPI_DOUBLE, which_node, myPotato,
378 <                     MPI_COMM_WORLD, &istatus);
379 <            myPotato++;
380 <
381 <            MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
382 <
383 <            if (msgLen == 13 || msgLen == 19)
384 <              isDirectional = 1;
385 <            else
386 <              isDirectional = 0;
387 <
388 <            // If we've survived to here, format the line:
389 <
390 <            if (!isDirectional) {
391 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
392 <                      MPIatomTypeString, atomData[0],
393 <                      atomData[1], atomData[2],
394 <                      atomData[3], atomData[4],
395 <                      atomData[5]);
396 <
397 <              strcat(writeLine,
398 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
399 <            } else {
400 <              sprintf(writeLine,
401 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
402 <                      MPIatomTypeString,
403 <                      atomData[0],
404 <                      atomData[1],
405 <                      atomData[2],
406 <                      atomData[3],
407 <                      atomData[4],
408 <                      atomData[5],
409 <                      atomData[6],
410 <                      atomData[7],
411 <                      atomData[8],
412 <                      atomData[9],
413 <                      atomData[10],
414 <                      atomData[11],
415 <                      atomData[12]);
416 <            }
417 <            
418 <            if (needForceVector_) {
419 <              if (!isDirectional) {
420 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
421 <                        atomData[6],
422 <                        atomData[7],
423 <                        atomData[8],
424 <                        atomData[9],
425 <                        atomData[10],
426 <                        atomData[11]);
427 <              } else {
428 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
429 <                        atomData[13],
430 <                        atomData[14],
431 <                        atomData[15],
432 <                        atomData[16],
433 <                        atomData[17],
434 <                        atomData[18]);
435 <              }
436 <            }
437 <
438 <            sprintf(writeLine, "\n");
439 <            os << writeLine;
440 <
441 <          } // end for(int l =0)
442 <
443 <          potatoes[which_node] = myPotato;
444 <        } else { //master node has current molecule
445 <
446 <          mol = info_->getMoleculeByGlobalIndex(i);
447 <
448 <          if (mol == NULL) {
449 <            sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
450 <            painCave.isFatal = 1;
451 <            simError();
452 <          }
453 <                
454 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
455 <               integrableObject = mol->nextIntegrableObject(ii)) {      
456 <
457 <            pos = integrableObject->getPos();
458 <            vel = integrableObject->getVel();
459 <
460 <            atomData[0] = pos[0];
461 <            atomData[1] = pos[1];
462 <            atomData[2] = pos[2];
463 <
464 <            atomData[3] = vel[0];
465 <            atomData[4] = vel[1];
466 <            atomData[5] = vel[2];
467 <
468 <            isDirectional = 0;
469 <
470 <            if (integrableObject->isDirectional()) {
471 <              isDirectional = 1;
472 <
473 <              q = integrableObject->getQ();
474 <              ji = integrableObject->getJ();
475 <
476 <              for(int j = 0; j < 6; j++) {
477 <                atomData[j] = atomData[j];
478 <              }
479 <
480 <              atomData[6] = q[0];
481 <              atomData[7] = q[1];
482 <              atomData[8] = q[2];
483 <              atomData[9] = q[3];
484 <
485 <              atomData[10] = ji[0];
486 <              atomData[11] = ji[1];
487 <              atomData[12] = ji[2];
488 <            }
489 <
490 <            if (needForceVector_) {
491 <              frc = integrableObject->getFrc();
492 <              trq = integrableObject->getTrq();
493 <
494 <              if (!isDirectional) {
495 <                atomData[6] = frc[0];
496 <                atomData[7] = frc[1];
497 <                atomData[8] = frc[2];
498 <                atomData[9] = trq[0];
499 <                atomData[10] = trq[1];
500 <                atomData[11] = trq[2];
501 <              } else {
502 <                atomData[13] = frc[0];
503 <                atomData[14] = frc[1];
504 <                atomData[15] = frc[2];
505 <                atomData[16] = trq[0];
506 <                atomData[17] = trq[1];
507 <                atomData[18] = trq[2];
508 <              }
509 <            }
510 <
511 <            // If we've survived to here, format the line:
512 <
513 <            if (!isDirectional) {
514 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
515 <                      integrableObject->getType().c_str(), atomData[0],
516 <                      atomData[1], atomData[2],
517 <                      atomData[3], atomData[4],
518 <                      atomData[5]);
511 >      if (needForceVector_) {
512 >        type += "g";
513 >        RealType fqFrc = integrableObject->getFlucQFrc();        
514 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
515 >          sprintf( painCave.errMsg,
516 >                   "DumpWriter detected a numerical error writing the"
517 >                   " fluctuating charge force for object %d", index);      
518 >          painCave.isFatal = 1;
519 >          simError();
520 >        }
521 >        sprintf(tempBuffer, " %13e ", fqFrc);        
522 >        line += tempBuffer;
523 >      }
524 >    }
525  
526 <              strcat(writeLine,
527 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
528 <            } else {
529 <              sprintf(writeLine,
530 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
531 <                      integrableObject->getType().c_str(),
532 <                      atomData[0],
533 <                      atomData[1],
534 <                      atomData[2],
535 <                      atomData[3],
536 <                      atomData[4],
531 <                      atomData[5],
532 <                      atomData[6],
533 <                      atomData[7],
534 <                      atomData[8],
535 <                      atomData[9],
536 <                      atomData[10],
537 <                      atomData[11],
538 <                      atomData[12]);
539 <            }
540 <
541 <            if (needForceVector_) {
542 <              if (!isDirectional) {
543 <              sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
544 <                      atomData[6],
545 <                      atomData[7],
546 <                      atomData[8],
547 <                      atomData[9],
548 <                      atomData[10],
549 <                      atomData[11]);
550 <              } else {
551 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
552 <                        atomData[13],
553 <                        atomData[14],
554 <                        atomData[15],
555 <                        atomData[16],
556 <                        atomData[17],
557 <                        atomData[18]);
558 <              }
559 <            }
560 <
561 <            sprintf(writeLine, "\n");
562 <            os << writeLine;
563 <
564 <          } //end for(iter = integrableObject.begin())
565 <        }
566 <      } //end for(i = 0; i < mpiSim->getNmol())
567 <
568 <      os.flush();
569 <        
570 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
571 <      MPIcheckPoint();
572 <
573 <      delete [] potatoes;
574 <    } else {
575 <
576 <      // worldRank != 0, so I'm a remote node.  
577 <
578 <      // Set my magic potato to 0:
579 <
580 <      myPotato = 0;
581 <
582 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
583 <
584 <        // Am I the node which has this integrableObject?
585 <        int whichNode = info_->getMolToProc(i);
586 <        if (whichNode == worldRank) {
587 <          if (myPotato + 1 >= MAXTAG) {
588 <
589 <            // The potato was going to exceed the maximum value,
590 <            // so wrap this processor potato back to 0 (and block until
591 <            // node 0 says we can go:
592 <
593 <            MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
594 <                     &istatus);
595 <          }
596 <
597 <          mol = info_->getMoleculeByGlobalIndex(i);
598 <
599 <                
600 <          nCurObj = mol->getNIntegrableObjects();
601 <
602 <          MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
603 <          myPotato++;
604 <
605 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
606 <               integrableObject = mol->nextIntegrableObject(ii)) {
607 <
608 <            if (myPotato + 2 >= MAXTAG) {
609 <
610 <              // The potato was going to exceed the maximum value,
611 <              // so wrap this processor potato back to 0 (and block until
612 <              // node 0 says we can go:
613 <
614 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
615 <                       &istatus);
616 <            }
617 <
618 <            pos = integrableObject->getPos();
619 <            vel = integrableObject->getVel();
620 <
621 <            atomData[0] = pos[0];
622 <            atomData[1] = pos[1];
623 <            atomData[2] = pos[2];
624 <
625 <            atomData[3] = vel[0];
626 <            atomData[4] = vel[1];
627 <            atomData[5] = vel[2];
628 <
629 <            isDirectional = 0;
630 <
631 <            if (integrableObject->isDirectional()) {
632 <              isDirectional = 1;
633 <
634 <              q = integrableObject->getQ();
635 <              ji = integrableObject->getJ();
636 <
637 <              atomData[6] = q[0];
638 <              atomData[7] = q[1];
639 <              atomData[8] = q[2];
640 <              atomData[9] = q[3];
641 <
642 <              atomData[10] = ji[0];
643 <              atomData[11] = ji[1];
644 <              atomData[12] = ji[2];
645 <            }
646 <
647 <            if (needForceVector_) {
648 <              frc = integrableObject->getFrc();
649 <              trq = integrableObject->getTrq();
650 <              
651 <              if (!isDirectional) {
652 <                atomData[6] = frc[0];
653 <                atomData[7] = frc[1];
654 <                atomData[8] = frc[2];
655 <                
656 <                atomData[9] = trq[0];
657 <                atomData[10] = trq[1];
658 <                atomData[11] = trq[2];
659 <              } else {
660 <                atomData[13] = frc[0];
661 <                atomData[14] = frc[1];
662 <                atomData[15] = frc[2];
663 <                
664 <                atomData[16] = trq[0];
665 <                atomData[17] = trq[1];
666 <                atomData[18] = trq[2];
667 <              }
668 <            }
669 <
670 <            strncpy(MPIatomTypeString, integrableObject->getType().c_str(), MINIBUFFERSIZE);
671 <
672 <            // null terminate the  std::string before sending (just in case):
673 <            MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
674 <
675 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
676 <                     myPotato, MPI_COMM_WORLD);
677 <
678 <            myPotato++;
679 <
680 <            if (isDirectional && needForceVector_) {
681 <              MPI_Send(atomData, 19, MPI_DOUBLE, 0, myPotato,
682 <                       MPI_COMM_WORLD);
683 <            } else if (isDirectional) {
684 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato,
685 <                       MPI_COMM_WORLD);
686 <            } else if (needForceVector_) {
687 <              MPI_Send(atomData, 12, MPI_DOUBLE, 0, myPotato,
688 <                       MPI_COMM_WORLD);
689 <            } else {
690 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato,
691 <                       MPI_COMM_WORLD);
692 <            }
693 <
694 <            myPotato++;
695 <          }
696 <                    
697 <        }
698 <            
526 >    if (needElectricField_) {
527 >      type += "e";
528 >      Vector3d eField= integrableObject->getElectricField();
529 >      if (isinf(eField[0]) || isnan(eField[0]) ||
530 >          isinf(eField[1]) || isnan(eField[1]) ||
531 >          isinf(eField[2]) || isnan(eField[2]) ) {      
532 >        sprintf( painCave.errMsg,
533 >                 "DumpWriter detected a numerical error writing the electric"
534 >                 " field for object %d", index);      
535 >        painCave.isFatal = 1;
536 >        simError();
537        }
538 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
539 <      MPIcheckPoint();
538 >      sprintf(tempBuffer, " %13e %13e %13e",
539 >              eField[0], eField[1], eField[2]);
540 >      line += tempBuffer;
541      }
542  
543 < #endif // is_mpi
544 <
543 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
544 >    return std::string(tempBuffer);
545    }
546  
547    void DumpWriter::writeDump() {
# Line 727 | Line 566 | namespace oopse {
566   #ifdef IS_MPI
567      if (worldRank == 0) {
568   #endif // is_mpi
569 <    delete eorStream;
570 <
569 >      writeClosing(*eorStream);
570 >      delete eorStream;
571   #ifdef IS_MPI
572      }
573   #endif // is_mpi  
# Line 761 | Line 600 | namespace oopse {
600   #ifdef IS_MPI
601      if (worldRank == 0) {
602   #endif // is_mpi
603 <    delete eorStream;
604 <
603 >      writeClosing(*eorStream);
604 >      delete eorStream;
605   #ifdef IS_MPI
606      }
607   #endif // is_mpi  
608      
609    }
610  
611 < std::ostream* DumpWriter::createOStream(const std::string& filename) {
611 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
612  
613      std::ostream* newOStream;
614   #ifdef HAVE_LIBZ
615      if (needCompression_) {
616 <        newOStream = new ogzstream(filename.c_str());
616 >      newOStream = new ogzstream(filename.c_str());
617      } else {
618 <        newOStream = new std::ofstream(filename.c_str());
618 >      newOStream = new std::ofstream(filename.c_str());
619      }
620   #else
621      newOStream = new std::ofstream(filename.c_str());
622   #endif
623 +    //write out MetaData first
624 +    (*newOStream) << "<OpenMD version=1>" << std::endl;
625 +    (*newOStream) << "  <MetaData>" << std::endl;
626 +    (*newOStream) << info_->getRawMetaData();
627 +    (*newOStream) << "  </MetaData>" << std::endl;
628      return newOStream;
629 < }
629 >  }
630  
631 < }//end namespace oopse
631 >  void DumpWriter::writeClosing(std::ostream& os) {
632 >
633 >    os << "</OpenMD>\n";
634 >    os.flush();
635 >  }
636 >
637 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1714 by gezelter, Sat May 19 18:12:46 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines