ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 854 by chuckv, Thu Jan 12 19:56:30 2006 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include "io/DumpWriter.hpp"
44   #include "primitives/Molecule.hpp"
45   #include "utils/simError.h"
46   #include "io/basic_teebuf.hpp"
47 + #ifdef HAVE_ZLIB
48   #include "io/gzstream.hpp"
49 + #endif
50   #include "io/Globals.hpp"
51  
52 + #ifdef _MSC_VER
53 + #define isnan(x) _isnan((x))
54 + #define isinf(x) (!_finite(x) && !_isnan(x))
55 + #endif
56 +
57   #ifdef IS_MPI
58   #include <mpi.h>
59 < #endif //is_mpi
59 > #endif
60  
61 < namespace oopse {
61 > using namespace std;
62 > namespace OpenMD {
63  
64    DumpWriter::DumpWriter(SimInfo* info)
65      : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
66  
67      Globals* simParams = info->getSimParams();
68 <    needCompression_ = simParams->getCompressDumpFile();
69 <    needForceVector_ = simParams->getOutputForceVector();
68 >    needCompression_   = simParams->getCompressDumpFile();
69 >    needForceVector_   = simParams->getOutputForceVector();
70 >    needParticlePot_   = simParams->getOutputParticlePotential();
71 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
72 >    needElectricField_ = simParams->getOutputElectricField();
73 >
74 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
75 >      doSiteData_ = true;
76 >    } else {
77 >      doSiteData_ = false;
78 >    }
79 >
80      createDumpFile_ = true;
81   #ifdef HAVE_LIBZ
82      if (needCompression_) {
83 <        filename_ += ".gz";
84 <        eorFilename_ += ".gz";
83 >      filename_ += ".gz";
84 >      eorFilename_ += ".gz";
85      }
86   #endif
87      
88   #ifdef IS_MPI
89  
90 <      if (worldRank == 0) {
90 >    if (worldRank == 0) {
91   #endif // is_mpi
73
92          
93 <        dumpFile_ = createOStream(filename_);
93 >      dumpFile_ = createOStream(filename_);
94  
95 <        if (!dumpFile_) {
96 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
97 <                  filename_.c_str());
98 <          painCave.isFatal = 1;
99 <          simError();
100 <        }
95 >      if (!dumpFile_) {
96 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
97 >                filename_.c_str());
98 >        painCave.isFatal = 1;
99 >        simError();
100 >      }
101  
102   #ifdef IS_MPI
103  
104 <      }
104 >    }
105  
88      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
89      MPIcheckPoint();
90
106   #endif // is_mpi
107  
108 <    }
108 >  }
109  
110  
111    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
# Line 99 | Line 114 | namespace oopse {
114      Globals* simParams = info->getSimParams();
115      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
116  
117 <    needCompression_ = simParams->getCompressDumpFile();
118 <    needForceVector_ = simParams->getOutputForceVector();
117 >    needCompression_   = simParams->getCompressDumpFile();
118 >    needForceVector_   = simParams->getOutputForceVector();
119 >    needParticlePot_   = simParams->getOutputParticlePotential();
120 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
121 >    needElectricField_ = simParams->getOutputElectricField();
122 >
123 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
124 >      doSiteData_ = true;
125 >    } else {
126 >      doSiteData_ = false;
127 >    }
128 >
129      createDumpFile_ = true;
130   #ifdef HAVE_LIBZ
131      if (needCompression_) {
132 <        filename_ += ".gz";
133 <        eorFilename_ += ".gz";
132 >      filename_ += ".gz";
133 >      eorFilename_ += ".gz";
134      }
135   #endif
136      
137   #ifdef IS_MPI
138  
139 <      if (worldRank == 0) {
139 >    if (worldRank == 0) {
140   #endif // is_mpi
141  
142        
143 <        dumpFile_ = createOStream(filename_);
143 >      dumpFile_ = createOStream(filename_);
144  
145 <        if (!dumpFile_) {
146 <          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
147 <                  filename_.c_str());
148 <          painCave.isFatal = 1;
149 <          simError();
150 <        }
145 >      if (!dumpFile_) {
146 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
147 >                filename_.c_str());
148 >        painCave.isFatal = 1;
149 >        simError();
150 >      }
151  
152   #ifdef IS_MPI
153  
154 <      }
154 >    }
155  
131      sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
132      MPIcheckPoint();
133
156   #endif // is_mpi
157  
158 <    }
158 >  }
159    
160    DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
161 <  : info_(info), filename_(filename){
161 >    : info_(info), filename_(filename){
162      
163      Globals* simParams = info->getSimParams();
164      eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
165      
166 <    needCompression_ = simParams->getCompressDumpFile();
167 <    needForceVector_ = simParams->getOutputForceVector();
168 <    
166 >    needCompression_   = simParams->getCompressDumpFile();
167 >    needForceVector_   = simParams->getOutputForceVector();
168 >    needParticlePot_   = simParams->getOutputParticlePotential();
169 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
170 >    needElectricField_ = simParams->getOutputElectricField();
171 >
172 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
173 >      doSiteData_ = true;
174 >    } else {
175 >      doSiteData_ = false;
176 >    }
177 >
178   #ifdef HAVE_LIBZ
179      if (needCompression_) {
180        filename_ += ".gz";
# Line 170 | Line 201 | namespace oopse {
201   #ifdef IS_MPI
202        
203      }
204 +
205      
174    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
175    MPIcheckPoint();
176    
206   #endif // is_mpi
207      
208    }
180  
181  
182  
183  
184  
209  
210    DumpWriter::~DumpWriter() {
211  
# Line 190 | Line 214 | namespace oopse {
214      if (worldRank == 0) {
215   #endif // is_mpi
216        if (createDumpFile_){
217 +        writeClosing(*dumpFile_);
218          delete dumpFile_;
219        }
220   #ifdef IS_MPI
# Line 200 | Line 225 | namespace oopse {
225  
226    }
227  
228 <  void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
228 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
229  
230 <    double currentTime;
231 <    Mat3x3d hmat;
232 <    double chi;
233 <    double integralOfChiDt;
234 <    Mat3x3d eta;
235 <    
236 <    currentTime = s->getTime();
230 >    char buffer[1024];
231 >
232 >    os << "    <FrameData>\n";
233 >
234 >    RealType currentTime = s->getTime();
235 >
236 >    if (isinf(currentTime) || isnan(currentTime)) {      
237 >      sprintf( painCave.errMsg,
238 >               "DumpWriter detected a numerical error writing the time");      
239 >      painCave.isFatal = 1;
240 >      simError();
241 >    }
242 >    
243 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
244 >    os << buffer;
245 >
246 >    Mat3x3d hmat;
247      hmat = s->getHmat();
248 <    chi = s->getChi();
249 <    integralOfChiDt = s->getIntegralOfChiDt();
250 <    eta = s->getEta();
248 >
249 >    for (unsigned int i = 0; i < 3; i++) {
250 >      for (unsigned int j = 0; j < 3; j++) {
251 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
252 >          sprintf( painCave.errMsg,
253 >                   "DumpWriter detected a numerical error writing the box");
254 >          painCave.isFatal = 1;
255 >          simError();
256 >        }        
257 >      }
258 >    }
259      
260 <    os << currentTime << ";\t"
261 <       << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
262 <       << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
263 <       << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
260 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
261 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
262 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
263 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
264 >    os << buffer;
265  
266 <    //write out additional parameters, such as chi and eta
266 >    pair<RealType, RealType> thermostat = s->getThermostat();
267  
268 <    os << chi << "\t" << integralOfChiDt << ";\t";
268 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
269 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
270 >      sprintf( painCave.errMsg,
271 >               "DumpWriter detected a numerical error writing the thermostat");
272 >      painCave.isFatal = 1;
273 >      simError();
274 >    }
275 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
276 >            thermostat.second);
277 >    os << buffer;
278  
279 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
280 <       << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
281 <       << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
282 <        
283 <    os << "\n";
279 >    Mat3x3d eta;
280 >    eta = s->getBarostat();
281 >
282 >    for (unsigned int i = 0; i < 3; i++) {
283 >      for (unsigned int j = 0; j < 3; j++) {
284 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
285 >          sprintf( painCave.errMsg,
286 >                   "DumpWriter detected a numerical error writing the barostat");
287 >          painCave.isFatal = 1;
288 >          simError();
289 >        }        
290 >      }
291 >    }
292 >
293 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
294 >            eta(0, 0), eta(1, 0), eta(2, 0),
295 >            eta(0, 1), eta(1, 1), eta(2, 1),
296 >            eta(0, 2), eta(1, 2), eta(2, 2));
297 >    os << buffer;
298 >
299 >    os << "    </FrameData>\n";
300    }
301  
302    void DumpWriter::writeFrame(std::ostream& os) {
234    const int BUFFERSIZE = 2000;
235    const int MINIBUFFERSIZE = 100;
303  
304 <    char tempBuffer[BUFFERSIZE];
305 <    char writeLine[BUFFERSIZE];
304 > #ifdef IS_MPI
305 >    MPI::Status istatus;
306 > #endif
307  
240    Quat4d q;
241    Vector3d ji;
242    Vector3d pos;
243    Vector3d vel;
244    Vector3d frc;
245    Vector3d trq;
246
308      Molecule* mol;
309 <    StuntDouble* integrableObject;
309 >    StuntDouble* sd;
310      SimInfo::MoleculeIterator mi;
311      Molecule::IntegrableObjectIterator ii;
312 <  
313 <    int nTotObjects;    
253 <    nTotObjects = info_->getNGlobalIntegrableObjects();
312 >    RigidBody::AtomIterator ai;
313 >    Atom* atom;
314  
315   #ifndef IS_MPI
316 +    os << "  <Snapshot>\n";
317 +
318 +    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
319  
320 <
258 <    os << nTotObjects << "\n";
259 <        
260 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
261 <
320 >    os << "    <StuntDoubles>\n";
321      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
322  
323 <      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
324 <           integrableObject = mol->nextIntegrableObject(ii)) {
325 <                
323 >      
324 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
325 >           sd = mol->nextIntegrableObject(ii)) {        
326 >          os << prepareDumpLine(sd);
327 >          
328 >      }
329 >    }    
330 >    os << "    </StuntDoubles>\n";
331  
332 <        pos = integrableObject->getPos();
333 <        vel = integrableObject->getVel();
332 >    if (doSiteData_) {
333 >      os << "    <SiteData>\n";
334 >      for (mol = info_->beginMolecule(mi); mol != NULL;
335 >           mol = info_->nextMolecule(mi)) {
336 >              
337 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
338 >           sd = mol->nextIntegrableObject(ii)) {        
339  
340 <        sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
341 <                integrableObject->getType().c_str(),
342 <                pos[0], pos[1], pos[2],
274 <                vel[0], vel[1], vel[2]);
340 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
341 >          // do one for the IO itself
342 >          os << prepareSiteLine(sd, ioIndex, 0);
343  
344 <        strcpy(writeLine, tempBuffer);
345 <
346 <        if (integrableObject->isDirectional()) {
347 <          q = integrableObject->getQ();
348 <          ji = integrableObject->getJ();
349 <
350 <          sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
351 <                  q[0], q[1], q[2], q[3],
352 <                  ji[0], ji[1], ji[2]);
353 <          strcat(writeLine, tempBuffer);
354 <        } else {
355 <          strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
356 <        }
289 <
290 <        if (needForceVector_) {
291 <          frc = integrableObject->getFrc();
292 <          trq = integrableObject->getTrq();
293 <          
294 <          sprintf(tempBuffer, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
295 <                  frc[0], frc[1], frc[2],
296 <                  trq[0], trq[1], trq[2]);
297 <          strcat(writeLine, tempBuffer);
298 <        }
299 <        
300 <        strcat(writeLine, "\n");
301 <        os << writeLine;
302 <
303 <      }
344 >          if (sd->isRigidBody()) {
345 >            
346 >            RigidBody* rb = static_cast<RigidBody*>(sd);
347 >            int siteIndex = 0;
348 >            for (atom = rb->beginAtom(ai); atom != NULL;  
349 >                 atom = rb->nextAtom(ai)) {                                            
350 >              os << prepareSiteLine(atom, ioIndex, siteIndex);
351 >              siteIndex++;
352 >            }
353 >          }
354 >        }
355 >      }    
356 >      os << "    </SiteData>\n";
357      }
358 +    os << "  </Snapshot>\n";
359  
360      os.flush();
361 < #else // is_mpi
362 <    /*********************************************************************
309 <     * Documentation?  You want DOCUMENTATION?
310 <     *
311 <     * Why all the potatoes below?  
312 <     *
313 <     * To make a long story short, the original version of DumpWriter
314 <     * worked in the most inefficient way possible.  Node 0 would
315 <     * poke each of the node for an individual atom's formatted data
316 <     * as node 0 worked its way down the global index. This was particularly
317 <     * inefficient since the method blocked all processors at every atom
318 <     * (and did it twice!).
319 <     *
320 <     * An intermediate version of DumpWriter could be described from Node
321 <     * zero's perspective as follows:
322 <     *
323 <     *  1) Have 100 of your friends stand in a circle.
324 <     *  2) When you say go, have all of them start tossing potatoes at
325 <     *     you (one at a time).
326 <     *  3) Catch the potatoes.
327 <     *
328 <     * It was an improvement, but MPI has buffers and caches that could
329 <     * best be described in this analogy as "potato nets", so there's no
330 <     * need to block the processors atom-by-atom.
331 <     *
332 <     * This new and improved DumpWriter works in an even more efficient
333 <     * way:
334 <     *
335 <     *  1) Have 100 of your friend stand in a circle.
336 <     *  2) When you say go, have them start tossing 5-pound bags of
337 <     *     potatoes at you.
338 <     *  3) Once you've caught a friend's bag of potatoes,
339 <     *     toss them a spud to let them know they can toss another bag.
340 <     *
341 <     * How's THAT for documentation?
342 <     *
343 <     *********************************************************************/
361 > #else
362 >
363      const int masterNode = 0;
364 +    int worldRank = MPI::COMM_WORLD.Get_rank();
365 +    int nProc = MPI::COMM_WORLD.Get_size();
366  
367 <    int * potatoes;
368 <    int myPotato;
369 <    int nProc;
370 <    int which_node;
371 <    double atomData[19];
372 <    int isDirectional;
373 <    char MPIatomTypeString[MINIBUFFERSIZE];
374 <    int msgLen; // the length of message actually recieved at master nodes
375 <    int haveError;
376 <    MPI_Status istatus;
377 <    int nCurObj;
367 >    if (worldRank == masterNode) {      
368 >      os << "  <Snapshot>\n";  
369 >      writeFrameProperties(os,
370 >                           info_->getSnapshotManager()->getCurrentSnapshot());
371 >      os << "    <StuntDoubles>\n";
372 >    }
373 >
374 >    //every node prepares the dump lines for integrable objects belong to itself
375 >    std::string buffer;
376 >    for (mol = info_->beginMolecule(mi); mol != NULL;
377 >         mol = info_->nextMolecule(mi)) {
378 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
379 >           sd = mol->nextIntegrableObject(ii)) {        
380 >        buffer += prepareDumpLine(sd);
381 >      }
382 >    }
383      
384 <    // code to find maximum tag value
385 <    int * tagub;
386 <    int flag;
387 <    int MAXTAG;
388 <    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
384 >    if (worldRank == masterNode) {      
385 >      os << buffer;
386 >      
387 >      for (int i = 1; i < nProc; ++i) {
388 >        // tell processor i to start sending us data:
389 >        MPI::COMM_WORLD.Bcast(&i, 1, MPI::INT, masterNode);
390  
391 <    if (flag) {
392 <      MAXTAG = *tagub;
391 >        // receive the length of the string buffer that was
392 >        // prepared by processor i:        
393 >        int recvLength;
394 >        MPI::COMM_WORLD.Recv(&recvLength, 1, MPI::INT, i, MPI::ANY_TAG,
395 >                             istatus);
396 >
397 >        // create a buffer to receive the data
398 >        char* recvBuffer = new char[recvLength];
399 >        if (recvBuffer == NULL) {
400 >        } else {
401 >          // receive the data:
402 >          MPI::COMM_WORLD.Recv(recvBuffer, recvLength, MPI::CHAR, i,
403 >                               MPI::ANY_TAG, istatus);
404 >          // send it to the file:
405 >          os << recvBuffer;
406 >          // get rid of the receive buffer:
407 >          delete [] recvBuffer;
408 >        }
409 >      }
410      } else {
411 <      MAXTAG = 32767;
411 >      int sendBufferLength = buffer.size() + 1;
412 >      int myturn = 0;
413 >      for (int i = 1; i < nProc; ++i){
414 >        // wait for the master node to call our number:
415 >        MPI::COMM_WORLD.Bcast(&myturn, 1, MPI::INT, masterNode);
416 >        if (myturn == worldRank){
417 >          // send the length of our buffer:
418 >          MPI::COMM_WORLD.Send(&sendBufferLength, 1, MPI::INT, masterNode, 0);
419 >
420 >          // send our buffer:
421 >          MPI::COMM_WORLD.Send((void *)buffer.c_str(), sendBufferLength,
422 >                               MPI::CHAR, masterNode, 0);
423 >        }
424 >      }
425      }
426 +    
427 +    if (worldRank == masterNode) {      
428 +      os << "    </StuntDoubles>\n";
429 +    }
430  
431 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
431 >    if (doSiteData_) {
432 >      if (worldRank == masterNode) {
433 >        os << "    <SiteData>\n";
434 >      }
435 >      buffer.clear();
436 >      for (mol = info_->beginMolecule(mi); mol != NULL;
437 >           mol = info_->nextMolecule(mi)) {
438 >              
439 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
440 >             sd = mol->nextIntegrableObject(ii)) {      
441 >          
442 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
443 >          // do one for the IO itself
444 >          buffer += prepareSiteLine(sd, ioIndex, 0);
445  
446 <      // Node 0 needs a list of the magic potatoes for each processor;
446 >          if (sd->isRigidBody()) {
447 >            
448 >            RigidBody* rb = static_cast<RigidBody*>(sd);
449 >            int siteIndex = 0;
450 >            for (atom = rb->beginAtom(ai); atom != NULL;  
451 >                 atom = rb->nextAtom(ai)) {                                            
452 >              buffer += prepareSiteLine(atom, ioIndex, siteIndex);
453 >              siteIndex++;
454 >            }
455 >          }
456 >        }
457 >      }
458  
459 <      MPI_Comm_size(MPI_COMM_WORLD, &nProc);
460 <      potatoes = new int[nProc];
461 <
462 <      //write out the comment lines
463 <      for(int i = 0; i < nProc; i++) {
464 <        potatoes[i] = 0;
459 >      if (worldRank == masterNode) {    
460 >        os << buffer;
461 >        
462 >        for (int i = 1; i < nProc; ++i) {
463 >          
464 >          // tell processor i to start sending us data:
465 >          MPI::COMM_WORLD.Bcast(&i, 1, MPI::INT, masterNode);
466 >          
467 >          // receive the length of the string buffer that was
468 >          // prepared by processor i:        
469 >          int recvLength;
470 >          MPI::COMM_WORLD.Recv(&recvLength, 1, MPI::INT, i, MPI::ANY_TAG,
471 >                               istatus);
472 >          
473 >          // create a buffer to receive the data
474 >          char* recvBuffer = new char[recvLength];
475 >          if (recvBuffer == NULL) {
476 >          } else {
477 >            // receive the data:
478 >            MPI::COMM_WORLD.Recv(recvBuffer, recvLength, MPI::CHAR, i,
479 >                                 MPI::ANY_TAG, istatus);
480 >            // send it to the file:
481 >            os << recvBuffer;
482 >            // get rid of the receive buffer:
483 >            delete [] recvBuffer;
484 >          }
485 >        }      
486 >      } else {
487 >        int sendBufferLength = buffer.size() + 1;
488 >        int myturn = 0;
489 >        for (int i = 1; i < nProc; ++i){
490 >          // wait for the master node to call our number:
491 >          MPI::COMM_WORLD.Bcast(&myturn, 1, MPI::INT, masterNode);
492 >          if (myturn == worldRank){
493 >            // send the length of our buffer:
494 >            MPI::COMM_WORLD.Send(&sendBufferLength, 1, MPI::INT, masterNode, 0);
495 >            // send our buffer:
496 >            MPI::COMM_WORLD.Send((void *)buffer.c_str(), sendBufferLength,
497 >                                 MPI::CHAR, masterNode, 0);
498 >          }
499 >        }
500        }
501 +      
502 +      if (worldRank == masterNode) {    
503 +        os << "    </SiteData>\n";
504 +      }
505 +    }
506 +    
507 +    if (worldRank == masterNode) {
508 +      os << "  </Snapshot>\n";
509 +      os.flush();
510 +    }
511 +    
512 + #endif // is_mpi
513 +    
514 +  }
515  
516 +  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
517 +        
518 +    int index = sd->getGlobalIntegrableObjectIndex();
519 +    std::string type("pv");
520 +    std::string line;
521 +    char tempBuffer[4096];
522  
523 <      os << nTotObjects << "\n";
524 <      writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
523 >    Vector3d pos;
524 >    Vector3d vel;
525 >    pos = sd->getPos();
526  
527 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
527 >    if (isinf(pos[0]) || isnan(pos[0]) ||
528 >        isinf(pos[1]) || isnan(pos[1]) ||
529 >        isinf(pos[2]) || isnan(pos[2]) ) {      
530 >      sprintf( painCave.errMsg,
531 >               "DumpWriter detected a numerical error writing the position"
532 >               " for object %d", index);      
533 >      painCave.isFatal = 1;
534 >      simError();
535 >    }
536  
537 <        // Get the Node number which has this atom;
537 >    vel = sd->getVel();        
538  
539 <        which_node = info_->getMolToProc(i);
539 >    if (isinf(vel[0]) || isnan(vel[0]) ||
540 >        isinf(vel[1]) || isnan(vel[1]) ||
541 >        isinf(vel[2]) || isnan(vel[2]) ) {      
542 >      sprintf( painCave.errMsg,
543 >               "DumpWriter detected a numerical error writing the velocity"
544 >               " for object %d", index);      
545 >      painCave.isFatal = 1;
546 >      simError();
547 >    }
548  
549 <        if (which_node != masterNode) { //current molecule is in slave node
550 <          if (potatoes[which_node] + 1 >= MAXTAG) {
551 <            // The potato was going to exceed the maximum value,
552 <            // so wrap this processor potato back to 0:        
549 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
550 >            pos[0], pos[1], pos[2],
551 >            vel[0], vel[1], vel[2]);                    
552 >    line += tempBuffer;
553  
554 <            potatoes[which_node] = 0;
555 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
556 <                     MPI_COMM_WORLD);
557 <          }
554 >    if (sd->isDirectional()) {
555 >      type += "qj";
556 >      Quat4d q;
557 >      Vector3d ji;
558 >      q = sd->getQ();
559  
560 <          myPotato = potatoes[which_node];
560 >      if (isinf(q[0]) || isnan(q[0]) ||
561 >          isinf(q[1]) || isnan(q[1]) ||
562 >          isinf(q[2]) || isnan(q[2]) ||
563 >          isinf(q[3]) || isnan(q[3]) ) {      
564 >        sprintf( painCave.errMsg,
565 >                 "DumpWriter detected a numerical error writing the quaternion"
566 >                 " for object %d", index);      
567 >        painCave.isFatal = 1;
568 >        simError();
569 >      }
570  
571 <          //recieve the number of integrableObject in current molecule
405 <          MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
406 <                   MPI_COMM_WORLD, &istatus);
407 <          myPotato++;
571 >      ji = sd->getJ();
572  
573 <          for(int l = 0; l < nCurObj; l++) {
574 <            if (potatoes[which_node] + 2 >= MAXTAG) {
575 <              // The potato was going to exceed the maximum value,
576 <              // so wrap this processor potato back to 0:        
573 >      if (isinf(ji[0]) || isnan(ji[0]) ||
574 >          isinf(ji[1]) || isnan(ji[1]) ||
575 >          isinf(ji[2]) || isnan(ji[2]) ) {      
576 >        sprintf( painCave.errMsg,
577 >                 "DumpWriter detected a numerical error writing the angular"
578 >                 " momentum for object %d", index);      
579 >        painCave.isFatal = 1;
580 >        simError();
581 >      }
582  
583 <              potatoes[which_node] = 0;
584 <              MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
585 <                       0, MPI_COMM_WORLD);
586 <            }
583 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
584 >              q[0], q[1], q[2], q[3],
585 >              ji[0], ji[1], ji[2]);
586 >      line += tempBuffer;
587 >    }
588  
589 <            MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
590 <                     which_node, myPotato, MPI_COMM_WORLD,
591 <                     &istatus);
589 >    if (needForceVector_) {
590 >      type += "f";
591 >      Vector3d frc = sd->getFrc();
592 >      if (isinf(frc[0]) || isnan(frc[0]) ||
593 >          isinf(frc[1]) || isnan(frc[1]) ||
594 >          isinf(frc[2]) || isnan(frc[2]) ) {      
595 >        sprintf( painCave.errMsg,
596 >                 "DumpWriter detected a numerical error writing the force"
597 >                 " for object %d", index);      
598 >        painCave.isFatal = 1;
599 >        simError();
600 >      }
601 >      sprintf(tempBuffer, " %13e %13e %13e",
602 >              frc[0], frc[1], frc[2]);
603 >      line += tempBuffer;
604 >      
605 >      if (sd->isDirectional()) {
606 >        type += "t";
607 >        Vector3d trq = sd->getTrq();        
608 >        if (isinf(trq[0]) || isnan(trq[0]) ||
609 >            isinf(trq[1]) || isnan(trq[1]) ||
610 >            isinf(trq[2]) || isnan(trq[2]) ) {      
611 >          sprintf( painCave.errMsg,
612 >                   "DumpWriter detected a numerical error writing the torque"
613 >                   " for object %d", index);      
614 >          painCave.isFatal = 1;
615 >          simError();
616 >        }        
617 >        sprintf(tempBuffer, " %13e %13e %13e",
618 >                trq[0], trq[1], trq[2]);
619 >        line += tempBuffer;
620 >      }      
621 >    }
622  
623 <            myPotato++;
623 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
624 >    return std::string(tempBuffer);
625 >  }
626  
627 <            MPI_Recv(atomData, 19, MPI_DOUBLE, which_node, myPotato,
628 <                     MPI_COMM_WORLD, &istatus);
427 <            myPotato++;
627 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
628 >        
629  
630 <            MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
630 >    std::string id;
631 >    std::string type;
632 >    std::string line;
633 >    char tempBuffer[4096];
634  
635 <            if (msgLen == 13 || msgLen == 19)
636 <              isDirectional = 1;
637 <            else
638 <              isDirectional = 0;
635 >    if (sd->isRigidBody()) {
636 >      sprintf(tempBuffer, "%10d           ", ioIndex);
637 >      id = std::string(tempBuffer);
638 >    } else {
639 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
640 >      id = std::string(tempBuffer);
641 >    }
642 >              
643 >    if (needFlucQ_) {
644 >      type += "cw";
645 >      RealType fqPos = sd->getFlucQPos();
646 >      if (isinf(fqPos) || isnan(fqPos) ) {      
647 >        sprintf( painCave.errMsg,
648 >                 "DumpWriter detected a numerical error writing the"
649 >                 " fluctuating charge for object %s", id.c_str());      
650 >        painCave.isFatal = 1;
651 >        simError();
652 >      }
653 >      sprintf(tempBuffer, " %13e ", fqPos);
654 >      line += tempBuffer;
655 >    
656 >      RealType fqVel = sd->getFlucQVel();
657 >      if (isinf(fqVel) || isnan(fqVel) ) {      
658 >        sprintf( painCave.errMsg,
659 >                 "DumpWriter detected a numerical error writing the"
660 >                 " fluctuating charge velocity for object %s", id.c_str());      
661 >        painCave.isFatal = 1;
662 >        simError();
663 >      }
664 >      sprintf(tempBuffer, " %13e ", fqVel);
665 >      line += tempBuffer;
666  
667 <            // If we've survived to here, format the line:
667 >      if (needForceVector_) {
668 >        type += "g";
669 >        RealType fqFrc = sd->getFlucQFrc();        
670 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
671 >          sprintf( painCave.errMsg,
672 >                   "DumpWriter detected a numerical error writing the"
673 >                   " fluctuating charge force for object %s", id.c_str());      
674 >          painCave.isFatal = 1;
675 >          simError();
676 >        }
677 >        sprintf(tempBuffer, " %13e ", fqFrc);        
678 >        line += tempBuffer;
679 >      }
680 >    }
681  
682 <            if (!isDirectional) {
683 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
684 <                      MPIatomTypeString, atomData[0],
685 <                      atomData[1], atomData[2],
686 <                      atomData[3], atomData[4],
687 <                      atomData[5]);
682 >    if (needElectricField_) {
683 >      type += "e";
684 >      Vector3d eField= sd->getElectricField();
685 >      if (isinf(eField[0]) || isnan(eField[0]) ||
686 >          isinf(eField[1]) || isnan(eField[1]) ||
687 >          isinf(eField[2]) || isnan(eField[2]) ) {      
688 >        sprintf( painCave.errMsg,
689 >                 "DumpWriter detected a numerical error writing the electric"
690 >                 " field for object %s", id.c_str());      
691 >        painCave.isFatal = 1;
692 >        simError();
693 >      }
694 >      sprintf(tempBuffer, " %13e %13e %13e",
695 >              eField[0], eField[1], eField[2]);
696 >      line += tempBuffer;
697 >    }
698  
445              strcat(writeLine,
446                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
447            } else {
448              sprintf(writeLine,
449                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
450                      MPIatomTypeString,
451                      atomData[0],
452                      atomData[1],
453                      atomData[2],
454                      atomData[3],
455                      atomData[4],
456                      atomData[5],
457                      atomData[6],
458                      atomData[7],
459                      atomData[8],
460                      atomData[9],
461                      atomData[10],
462                      atomData[11],
463                      atomData[12]);
464            }
465            
466            if (needForceVector_) {
467              if (!isDirectional) {
468                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
469                        atomData[6],
470                        atomData[7],
471                        atomData[8],
472                        atomData[9],
473                        atomData[10],
474                        atomData[11]);
475              } else {
476                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
477                        atomData[13],
478                        atomData[14],
479                        atomData[15],
480                        atomData[16],
481                        atomData[17],
482                        atomData[18]);
483              }
484            }
699  
700 <            sprintf(writeLine, "\n");
701 <            os << writeLine;
702 <
703 <          } // end for(int l =0)
704 <
705 <          potatoes[which_node] = myPotato;
706 <        } else { //master node has current molecule
707 <
708 <          mol = info_->getMoleculeByGlobalIndex(i);
495 <
496 <          if (mol == NULL) {
497 <            sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
498 <            painCave.isFatal = 1;
499 <            simError();
500 <          }
501 <                
502 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
503 <               integrableObject = mol->nextIntegrableObject(ii)) {      
504 <
505 <            pos = integrableObject->getPos();
506 <            vel = integrableObject->getVel();
507 <
508 <            atomData[0] = pos[0];
509 <            atomData[1] = pos[1];
510 <            atomData[2] = pos[2];
511 <
512 <            atomData[3] = vel[0];
513 <            atomData[4] = vel[1];
514 <            atomData[5] = vel[2];
515 <
516 <            isDirectional = 0;
517 <
518 <            if (integrableObject->isDirectional()) {
519 <              isDirectional = 1;
520 <
521 <              q = integrableObject->getQ();
522 <              ji = integrableObject->getJ();
523 <
524 <              for(int j = 0; j < 6; j++) {
525 <                atomData[j] = atomData[j];
526 <              }
527 <
528 <              atomData[6] = q[0];
529 <              atomData[7] = q[1];
530 <              atomData[8] = q[2];
531 <              atomData[9] = q[3];
532 <
533 <              atomData[10] = ji[0];
534 <              atomData[11] = ji[1];
535 <              atomData[12] = ji[2];
536 <            }
537 <
538 <            if (needForceVector_) {
539 <              frc = integrableObject->getFrc();
540 <              trq = integrableObject->getTrq();
541 <
542 <              if (!isDirectional) {
543 <                atomData[6] = frc[0];
544 <                atomData[7] = frc[1];
545 <                atomData[8] = frc[2];
546 <                atomData[9] = trq[0];
547 <                atomData[10] = trq[1];
548 <                atomData[11] = trq[2];
549 <              } else {
550 <                atomData[13] = frc[0];
551 <                atomData[14] = frc[1];
552 <                atomData[15] = frc[2];
553 <                atomData[16] = trq[0];
554 <                atomData[17] = trq[1];
555 <                atomData[18] = trq[2];
556 <              }
557 <            }
558 <
559 <            // If we've survived to here, format the line:
560 <
561 <            if (!isDirectional) {
562 <              sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
563 <                      integrableObject->getType().c_str(), atomData[0],
564 <                      atomData[1], atomData[2],
565 <                      atomData[3], atomData[4],
566 <                      atomData[5]);
567 <
568 <              strcat(writeLine,
569 <                     "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0");
570 <            } else {
571 <              sprintf(writeLine,
572 <                      "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
573 <                      integrableObject->getType().c_str(),
574 <                      atomData[0],
575 <                      atomData[1],
576 <                      atomData[2],
577 <                      atomData[3],
578 <                      atomData[4],
579 <                      atomData[5],
580 <                      atomData[6],
581 <                      atomData[7],
582 <                      atomData[8],
583 <                      atomData[9],
584 <                      atomData[10],
585 <                      atomData[11],
586 <                      atomData[12]);
587 <            }
588 <
589 <            if (needForceVector_) {
590 <              if (!isDirectional) {
591 <              sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
592 <                      atomData[6],
593 <                      atomData[7],
594 <                      atomData[8],
595 <                      atomData[9],
596 <                      atomData[10],
597 <                      atomData[11]);
598 <              } else {
599 <                sprintf(writeLine, "\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf",
600 <                        atomData[13],
601 <                        atomData[14],
602 <                        atomData[15],
603 <                        atomData[16],
604 <                        atomData[17],
605 <                        atomData[18]);
606 <              }
607 <            }
608 <
609 <            sprintf(writeLine, "\n");
610 <            os << writeLine;
611 <
612 <          } //end for(iter = integrableObject.begin())
613 <        }
614 <      } //end for(i = 0; i < mpiSim->getNmol())
615 <
616 <      os.flush();
617 <        
618 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
619 <      MPIcheckPoint();
620 <
621 <      delete [] potatoes;
622 <    } else {
623 <
624 <      // worldRank != 0, so I'm a remote node.  
625 <
626 <      // Set my magic potato to 0:
627 <
628 <      myPotato = 0;
629 <
630 <      for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
631 <
632 <        // Am I the node which has this integrableObject?
633 <        int whichNode = info_->getMolToProc(i);
634 <        if (whichNode == worldRank) {
635 <          if (myPotato + 1 >= MAXTAG) {
636 <
637 <            // The potato was going to exceed the maximum value,
638 <            // so wrap this processor potato back to 0 (and block until
639 <            // node 0 says we can go:
640 <
641 <            MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
642 <                     &istatus);
643 <          }
644 <
645 <          mol = info_->getMoleculeByGlobalIndex(i);
646 <
647 <                
648 <          nCurObj = mol->getNIntegrableObjects();
649 <
650 <          MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
651 <          myPotato++;
652 <
653 <          for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
654 <               integrableObject = mol->nextIntegrableObject(ii)) {
655 <
656 <            if (myPotato + 2 >= MAXTAG) {
657 <
658 <              // The potato was going to exceed the maximum value,
659 <              // so wrap this processor potato back to 0 (and block until
660 <              // node 0 says we can go:
661 <
662 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
663 <                       &istatus);
664 <            }
665 <
666 <            pos = integrableObject->getPos();
667 <            vel = integrableObject->getVel();
668 <
669 <            atomData[0] = pos[0];
670 <            atomData[1] = pos[1];
671 <            atomData[2] = pos[2];
672 <
673 <            atomData[3] = vel[0];
674 <            atomData[4] = vel[1];
675 <            atomData[5] = vel[2];
676 <
677 <            isDirectional = 0;
678 <
679 <            if (integrableObject->isDirectional()) {
680 <              isDirectional = 1;
681 <
682 <              q = integrableObject->getQ();
683 <              ji = integrableObject->getJ();
684 <
685 <              atomData[6] = q[0];
686 <              atomData[7] = q[1];
687 <              atomData[8] = q[2];
688 <              atomData[9] = q[3];
689 <
690 <              atomData[10] = ji[0];
691 <              atomData[11] = ji[1];
692 <              atomData[12] = ji[2];
693 <            }
694 <
695 <            if (needForceVector_) {
696 <              frc = integrableObject->getFrc();
697 <              trq = integrableObject->getTrq();
698 <              
699 <              if (!isDirectional) {
700 <                atomData[6] = frc[0];
701 <                atomData[7] = frc[1];
702 <                atomData[8] = frc[2];
703 <                
704 <                atomData[9] = trq[0];
705 <                atomData[10] = trq[1];
706 <                atomData[11] = trq[2];
707 <              } else {
708 <                atomData[13] = frc[0];
709 <                atomData[14] = frc[1];
710 <                atomData[15] = frc[2];
711 <                
712 <                atomData[16] = trq[0];
713 <                atomData[17] = trq[1];
714 <                atomData[18] = trq[2];
715 <              }
716 <            }
717 <
718 <            strncpy(MPIatomTypeString, integrableObject->getType().c_str(), MINIBUFFERSIZE);
719 <
720 <            // null terminate the  std::string before sending (just in case):
721 <            MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
722 <
723 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
724 <                     myPotato, MPI_COMM_WORLD);
725 <
726 <            myPotato++;
727 <
728 <            if (isDirectional && needForceVector_) {
729 <              MPI_Send(atomData, 19, MPI_DOUBLE, 0, myPotato,
730 <                       MPI_COMM_WORLD);
731 <            } else if (isDirectional) {
732 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato,
733 <                       MPI_COMM_WORLD);
734 <            } else if (needForceVector_) {
735 <              MPI_Send(atomData, 12, MPI_DOUBLE, 0, myPotato,
736 <                       MPI_COMM_WORLD);
737 <            } else {
738 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato,
739 <                       MPI_COMM_WORLD);
740 <            }
741 <
742 <            myPotato++;
743 <          }
744 <                    
745 <        }
746 <            
700 >    if (needParticlePot_) {
701 >      type += "u";
702 >      RealType particlePot = sd->getParticlePot();
703 >      if (isinf(particlePot) || isnan(particlePot)) {      
704 >        sprintf( painCave.errMsg,
705 >                 "DumpWriter detected a numerical error writing the particle "
706 >                 " potential for object %s", id.c_str());      
707 >        painCave.isFatal = 1;
708 >        simError();
709        }
710 <      sprintf(checkPointMsg, "Sucessfully took a dump.\n");
711 <      MPIcheckPoint();
710 >      sprintf(tempBuffer, " %13e", particlePot);
711 >      line += tempBuffer;
712      }
713 +    
714  
715 < #endif // is_mpi
716 <
715 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
716 >    return std::string(tempBuffer);
717    }
718  
719    void DumpWriter::writeDump() {
# Line 763 | Line 726 | namespace oopse {
726   #ifdef IS_MPI
727      if (worldRank == 0) {
728   #endif // is_mpi
729 <
729 >      
730        eorStream = createOStream(eorFilename_);
731 <
731 >      writeFrame(*eorStream);
732 >      
733   #ifdef IS_MPI
734      }
771 #endif // is_mpi    
772
773    writeFrame(*eorStream);
774
775 #ifdef IS_MPI
735      if (worldRank == 0) {
736   #endif // is_mpi
778    delete eorStream;
737  
738 +      writeClosing(*eorStream);
739 +      delete eorStream;
740 +
741   #ifdef IS_MPI
742      }
743   #endif // is_mpi  
# Line 809 | Line 770 | namespace oopse {
770   #ifdef IS_MPI
771      if (worldRank == 0) {
772   #endif // is_mpi
773 <    delete eorStream;
774 <
773 >      writeClosing(*eorStream);
774 >      delete eorStream;
775   #ifdef IS_MPI
776      }
777   #endif // is_mpi  
778      
779    }
780  
781 < std::ostream* DumpWriter::createOStream(const std::string& filename) {
781 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
782  
783      std::ostream* newOStream;
784 < #ifdef HAVE_LIBZ
784 > #ifdef HAVE_ZLIB
785      if (needCompression_) {
786 <        newOStream = new ogzstream(filename.c_str());
786 >      newOStream = new ogzstream(filename.c_str());
787      } else {
788 <        newOStream = new std::ofstream(filename.c_str());
788 >      newOStream = new std::ofstream(filename.c_str());
789      }
790   #else
791      newOStream = new std::ofstream(filename.c_str());
792   #endif
793 +    //write out MetaData first
794 +    (*newOStream) << "<OpenMD version=2>" << std::endl;
795 +    (*newOStream) << "  <MetaData>" << std::endl;
796 +    (*newOStream) << info_->getRawMetaData();
797 +    (*newOStream) << "  </MetaData>" << std::endl;
798      return newOStream;
799 < }
799 >  }
800  
801 < }//end namespace oopse
801 >  void DumpWriter::writeClosing(std::ostream& os) {
802 >
803 >    os << "</OpenMD>\n";
804 >    os.flush();
805 >  }
806 >
807 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 854 by chuckv, Thu Jan 12 19:56:30 2006 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1874 by gezelter, Wed May 15 15:09:35 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines