ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 251 by tim, Wed Jan 12 23:24:55 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include "io/DumpWriter.hpp"
44   #include "primitives/Molecule.hpp"
45   #include "utils/simError.h"
46 + #include "io/basic_teebuf.hpp"
47 + #ifdef HAVE_ZLIB
48 + #include "io/gzstream.hpp"
49 + #endif
50 + #include "io/Globals.hpp"
51  
52 + #ifdef _MSC_VER
53 + #define isnan(x) _isnan((x))
54 + #define isinf(x) (!_finite(x) && !_isnan(x))
55 + #endif
56 +
57   #ifdef IS_MPI
58   #include <mpi.h>
59 < #endif //is_mpi
59 > #endif
60  
61 < namespace oopse {
61 > using namespace std;
62 > namespace OpenMD {
63  
64 < DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
65 <                   : info_(info), filename_(filename){
64 >  DumpWriter::DumpWriter(SimInfo* info)
65 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
66 >
67 >    Globals* simParams = info->getSimParams();
68 >    needCompression_   = simParams->getCompressDumpFile();
69 >    needForceVector_   = simParams->getOutputForceVector();
70 >    needParticlePot_   = simParams->getOutputParticlePotential();
71 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
72 >    needElectricField_ = simParams->getOutputElectricField();
73 >
74 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
75 >      doSiteData_ = true;
76 >    } else {
77 >      doSiteData_ = false;
78 >    }
79 >
80 >    createDumpFile_ = true;
81 > #ifdef HAVE_LIBZ
82 >    if (needCompression_) {
83 >      filename_ += ".gz";
84 >      eorFilename_ += ".gz";
85 >    }
86 > #endif
87 >    
88   #ifdef IS_MPI
89  
90      if (worldRank == 0) {
91   #endif // is_mpi
92 +        
93 +      dumpFile_ = createOStream(filename_);
94  
95 <        dumpFile_.open(filename_.c_str(), std::ios::out | std::ios::trunc);
95 >      if (!dumpFile_) {
96 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
97 >                filename_.c_str());
98 >        painCave.isFatal = 1;
99 >        simError();
100 >      }
101  
61        if (!dumpFile_) {
62            sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
63                    filename_.c_str());
64            painCave.isFatal = 1;
65            simError();
66        }
67
102   #ifdef IS_MPI
103  
104      }
105  
72    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
73    MPIcheckPoint();
74
106   #endif // is_mpi
107  
108 < }
108 >  }
109  
79 DumpWriter::~DumpWriter() {
110  
111 +  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
112 +    : info_(info), filename_(filename){
113 +
114 +    Globals* simParams = info->getSimParams();
115 +    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
116 +
117 +    needCompression_   = simParams->getCompressDumpFile();
118 +    needForceVector_   = simParams->getOutputForceVector();
119 +    needParticlePot_   = simParams->getOutputParticlePotential();
120 +    needFlucQ_         = simParams->getOutputFluctuatingCharges();
121 +    needElectricField_ = simParams->getOutputElectricField();
122 +
123 +    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
124 +      doSiteData_ = true;
125 +    } else {
126 +      doSiteData_ = false;
127 +    }
128 +
129 +    createDumpFile_ = true;
130 + #ifdef HAVE_LIBZ
131 +    if (needCompression_) {
132 +      filename_ += ".gz";
133 +      eorFilename_ += ".gz";
134 +    }
135 + #endif
136 +    
137   #ifdef IS_MPI
138  
139      if (worldRank == 0) {
140   #endif // is_mpi
141  
142 <        dumpFile_.close();
142 >      
143 >      dumpFile_ = createOStream(filename_);
144  
145 +      if (!dumpFile_) {
146 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
147 +                filename_.c_str());
148 +        painCave.isFatal = 1;
149 +        simError();
150 +      }
151 +
152   #ifdef IS_MPI
153  
154      }
155  
156   #endif // is_mpi
157  
158 < }
158 >  }
159 >  
160 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
161 >    : info_(info), filename_(filename){
162 >    
163 >    Globals* simParams = info->getSimParams();
164 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
165 >    
166 >    needCompression_   = simParams->getCompressDumpFile();
167 >    needForceVector_   = simParams->getOutputForceVector();
168 >    needParticlePot_   = simParams->getOutputParticlePotential();
169 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
170 >    needElectricField_ = simParams->getOutputElectricField();
171  
172 < void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
172 >    if (needParticlePot_ || needFlucQ_ || needElectricField_) {
173 >      doSiteData_ = true;
174 >    } else {
175 >      doSiteData_ = false;
176 >    }
177  
178 <    double currentTime;
179 <    Mat3x3d hmat;
180 <    double chi;
181 <    double integralOfChiDt;
182 <    Mat3x3d eta;
178 > #ifdef HAVE_LIBZ
179 >    if (needCompression_) {
180 >      filename_ += ".gz";
181 >      eorFilename_ += ".gz";
182 >    }
183 > #endif
184      
185 <    currentTime = s->getTime();
105 <    hmat = s->getHmat();
106 <    chi = s->getChi();
107 <    integralOfChiDt = s->getIntegralOfChiDt();
108 <    eta = s->getEta();
185 > #ifdef IS_MPI
186      
187 <    os << currentTime << ";\t"
188 <         << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
189 <         << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
190 <         << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
187 >    if (worldRank == 0) {
188 > #endif // is_mpi
189 >      
190 >      createDumpFile_ = writeDumpFile;
191 >      if (createDumpFile_) {
192 >        dumpFile_ = createOStream(filename_);
193 >      
194 >        if (!dumpFile_) {
195 >          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
196 >                  filename_.c_str());
197 >          painCave.isFatal = 1;
198 >          simError();
199 >        }
200 >      }
201 > #ifdef IS_MPI
202 >      
203 >    }
204  
205 <    //write out additional parameters, such as chi and eta
205 >    
206 > #endif // is_mpi
207 >    
208 >  }
209  
210 <    os << chi << "\t" << integralOfChiDt << "\t;";
210 >  DumpWriter::~DumpWriter() {
211  
212 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
120 <         << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
121 <         << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
122 <        
123 <    os << std::endl;
124 < }
212 > #ifdef IS_MPI
213  
214 < void DumpWriter::writeFrame(std::ostream& os) {
215 <    const int BUFFERSIZE = 2000;
216 <    const int MINIBUFFERSIZE = 100;
214 >    if (worldRank == 0) {
215 > #endif // is_mpi
216 >      if (createDumpFile_){
217 >        writeClosing(*dumpFile_);
218 >        delete dumpFile_;
219 >      }
220 > #ifdef IS_MPI
221  
222 <    char tempBuffer[BUFFERSIZE];
131 <    char writeLine[BUFFERSIZE];
222 >    }
223  
224 <    Quat4d q;
134 <    Vector3d ji;
135 <    Vector3d pos;
136 <    Vector3d vel;
224 > #endif // is_mpi
225  
226 <    Molecule* mol;
139 <    StuntDouble* integrableObject;
140 <    SimInfo::MoleculeIterator mi;
141 <    Molecule::IntegrableObjectIterator ii;
142 <  
143 <    int nTotObjects;    
144 <    nTotObjects = info_->getNGlobalIntegrableObjects();
226 >  }
227  
228 < #ifndef IS_MPI
228 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
229  
230 +    char buffer[1024];
231  
232 <    os << nTotObjects << "\n";
150 <        
151 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
232 >    os << "    <FrameData>\n";
233  
234 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
234 >    RealType currentTime = s->getTime();
235  
236 <        for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
237 <            integrableObject = mol->nextIntegrableObject(ii)) {
238 <                
236 >    if (isinf(currentTime) || isnan(currentTime)) {      
237 >      sprintf( painCave.errMsg,
238 >               "DumpWriter detected a numerical error writing the time");      
239 >      painCave.isFatal = 1;
240 >      simError();
241 >    }
242 >    
243 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
244 >    os << buffer;
245  
246 <            pos = integrableObject->getPos();
247 <            vel = integrableObject->getVel();
246 >    Mat3x3d hmat;
247 >    hmat = s->getHmat();
248  
249 <            sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
250 <                    integrableObject->getType().c_str(),
251 <                    pos[0], pos[1], pos[2],
252 <                    vel[0], vel[1], vel[2]);
249 >    for (unsigned int i = 0; i < 3; i++) {
250 >      for (unsigned int j = 0; j < 3; j++) {
251 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
252 >          sprintf( painCave.errMsg,
253 >                   "DumpWriter detected a numerical error writing the box");
254 >          painCave.isFatal = 1;
255 >          simError();
256 >        }        
257 >      }
258 >    }
259 >    
260 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
261 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
262 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
263 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
264 >    os << buffer;
265  
266 <            strcpy(writeLine, tempBuffer);
266 >    pair<RealType, RealType> thermostat = s->getThermostat();
267  
268 <            if (integrableObject->isDirectional()) {
269 <                q = integrableObject->getQ();
270 <                ji = integrableObject->getJ();
268 >    if (isinf(thermostat.first)  || isnan(thermostat.first) ||
269 >        isinf(thermostat.second) || isnan(thermostat.second)) {      
270 >      sprintf( painCave.errMsg,
271 >               "DumpWriter detected a numerical error writing the thermostat");
272 >      painCave.isFatal = 1;
273 >      simError();
274 >    }
275 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", thermostat.first,
276 >            thermostat.second);
277 >    os << buffer;
278  
279 <                sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
280 <                        q[0], q[1], q[2], q[3],
175 <                        ji[0], ji[1], ji[2]);
176 <                strcat(writeLine, tempBuffer);
177 <            } else {
178 <                strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
179 <            }
279 >    Mat3x3d eta;
280 >    eta = s->getBarostat();
281  
282 <            os << writeLine;
283 <
284 <        }
282 >    for (unsigned int i = 0; i < 3; i++) {
283 >      for (unsigned int j = 0; j < 3; j++) {
284 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
285 >          sprintf( painCave.errMsg,
286 >                   "DumpWriter detected a numerical error writing the barostat");
287 >          painCave.isFatal = 1;
288 >          simError();
289 >        }        
290 >      }
291      }
292  
293 < #else // is_mpi
294 <    /*********************************************************************
295 <     * Documentation?  You want DOCUMENTATION?
296 <     *
297 <     * Why all the potatoes below?  
191 <     *
192 <     * To make a long story short, the original version of DumpWriter
193 <     * worked in the most inefficient way possible.  Node 0 would
194 <     * poke each of the node for an individual atom's formatted data
195 <     * as node 0 worked its way down the global index. This was particularly
196 <     * inefficient since the method blocked all processors at every atom
197 <     * (and did it twice!).
198 <     *
199 <     * An intermediate version of DumpWriter could be described from Node
200 <     * zero's perspective as follows:
201 <     *
202 <     *  1) Have 100 of your friends stand in a circle.
203 <     *  2) When you say go, have all of them start tossing potatoes at
204 <     *     you (one at a time).
205 <     *  3) Catch the potatoes.
206 <     *
207 <     * It was an improvement, but MPI has buffers and caches that could
208 <     * best be described in this analogy as "potato nets", so there's no
209 <     * need to block the processors atom-by-atom.
210 <     *
211 <     * This new and improved DumpWriter works in an even more efficient
212 <     * way:
213 <     *
214 <     *  1) Have 100 of your friend stand in a circle.
215 <     *  2) When you say go, have them start tossing 5-pound bags of
216 <     *     potatoes at you.
217 <     *  3) Once you've caught a friend's bag of potatoes,
218 <     *     toss them a spud to let them know they can toss another bag.
219 <     *
220 <     * How's THAT for documentation?
221 <     *
222 <     *********************************************************************/
223 <    const int masterNode = 0;
293 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
294 >            eta(0, 0), eta(1, 0), eta(2, 0),
295 >            eta(0, 1), eta(1, 1), eta(2, 1),
296 >            eta(0, 2), eta(1, 2), eta(2, 2));
297 >    os << buffer;
298  
299 <    int * potatoes;
300 <    int myPotato;
227 <    int nProc;
228 <    int which_node;
229 <    double atomData[13];
230 <    int isDirectional;
231 <    const char * atomTypeString;
232 <    char MPIatomTypeString[MINIBUFFERSIZE];
233 <    int msgLen; // the length of message actually recieved at master nodes
234 <    int haveError;
235 <    MPI_Status istatus;
236 <    int nCurObj;
237 <    
238 <    // code to find maximum tag value
239 <    int * tagub;
240 <    int flag;
241 <    int MAXTAG;
242 <    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
299 >    os << "    </FrameData>\n";
300 >  }
301  
302 <    if (flag) {
245 <        MAXTAG = *tagub;
246 <    } else {
247 <        MAXTAG = 32767;
248 <    }
302 >  void DumpWriter::writeFrame(std::ostream& os) {
303  
304 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
304 > #ifdef IS_MPI
305 >    MPI_Status istatus;
306 > #endif
307  
308 <        // Node 0 needs a list of the magic potatoes for each processor;
308 >    Molecule* mol;
309 >    StuntDouble* sd;
310 >    SimInfo::MoleculeIterator mi;
311 >    Molecule::IntegrableObjectIterator ii;
312 >    RigidBody::AtomIterator ai;
313 >    Atom* atom;
314  
315 <        MPI_Comm_size(MPI_COMM_WORLD, &nProc);
316 <        potatoes = new int[nProc];
315 > #ifndef IS_MPI
316 >    os << "  <Snapshot>\n";
317 >
318 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
319  
320 <        //write out the comment lines
321 <        for(int i = 0; i < nProc; i++) {
259 <            potatoes[i] = 0;
260 <        }
320 >    os << "    <StuntDoubles>\n";
321 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
322  
323 +      
324 +      for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
325 +           sd = mol->nextIntegrableObject(ii)) {        
326 +          os << prepareDumpLine(sd);
327 +          
328 +      }
329 +    }    
330 +    os << "    </StuntDoubles>\n";
331  
332 <        os << nTotObjects << "\n";
333 <        writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
332 >    if (doSiteData_) {
333 >      os << "    <SiteData>\n";
334 >      for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
335 >              
336 >        for (sd = mol->beginIntegrableObject(ii); sd != NULL;  
337 >           sd = mol->nextIntegrableObject(ii)) {        
338  
339 <        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
339 >          int ioIndex = sd->getGlobalIntegrableObjectIndex();
340 >          // do one for the IO itself
341 >          os << prepareSiteLine(sd, ioIndex, 0);
342  
343 <            // Get the Node number which has this atom;
343 >          if (sd->isRigidBody()) {
344 >            
345 >            RigidBody* rb = static_cast<RigidBody*>(sd);
346 >            int siteIndex = 0;
347 >            for (atom = rb->beginAtom(ai); atom != NULL;  
348 >                 atom = rb->nextAtom(ai)) {                                            
349 >              os << prepareSiteLine(atom, ioIndex, siteIndex);
350 >              siteIndex++;
351 >            }
352 >          }
353 >        }
354 >      }    
355 >      os << "    </SiteData>\n";
356 >    }
357 >    os << "  </Snapshot>\n";
358  
359 <            which_node = info_->getMolToProc(i);
359 >    os.flush();
360 > #else
361 >    //every node prepares the dump lines for integrable objects belong to itself
362 >    std::string buffer;
363 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
364  
272            if (which_node != masterNode) { //current molecule is in slave node
273                if (potatoes[which_node] + 1 >= MAXTAG) {
274                    // The potato was going to exceed the maximum value,
275                    // so wrap this processor potato back to 0:        
365  
366 <                    potatoes[which_node] = 0;
367 <                    MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
368 <                             MPI_COMM_WORLD);
369 <                }
366 >      for (sd = mol->beginIntegrableObject(ii); sd != NULL;
367 >           sd = mol->nextIntegrableObject(ii)) {        
368 >          buffer += prepareDumpLine(sd);
369 >      }
370 >    }
371 >    
372 >    const int masterNode = 0;
373 >    int nProc;
374 >    MPI_Comm_size(MPI_COMM_WORLD, &nProc);
375 >    if (worldRank == masterNode) {      
376 >      os << "  <Snapshot>\n";  
377 >      writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
378 >      os << "    <StuntDoubles>\n";
379 >        
380 >      os << buffer;
381  
382 <                myPotato = potatoes[which_node];
382 >      for (int i = 1; i < nProc; ++i) {
383  
384 <                //recieve the number of integrableObject in current molecule
385 <                MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
286 <                         MPI_COMM_WORLD, &istatus);
287 <                myPotato++;
384 >        // receive the length of the string buffer that was
385 >        // prepared by processor i
386  
387 <                for(int l = 0; l < nCurObj; l++) {
388 <                    if (potatoes[which_node] + 2 >= MAXTAG) {
389 <                        // The potato was going to exceed the maximum value,
390 <                        // so wrap this processor potato back to 0:        
387 >        MPI_Bcast(&i, 1, MPI_INT,masterNode,MPI_COMM_WORLD);
388 >        int recvLength;
389 >        MPI_Recv(&recvLength, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &istatus);
390 >        char* recvBuffer = new char[recvLength];
391 >        if (recvBuffer == NULL) {
392 >        } else {
393 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i, 0, MPI_COMM_WORLD, &istatus);
394 >          os << recvBuffer;
395 >          delete [] recvBuffer;
396 >        }
397 >      }
398 >      os << "    </StuntDoubles>\n";
399 >      
400 >      os << "  </Snapshot>\n";
401 >      os.flush();
402 >    } else {
403 >      int sendBufferLength = buffer.size() + 1;
404 >      int myturn = 0;
405 >      for (int i = 1; i < nProc; ++i){
406 >        MPI_Bcast(&myturn,1, MPI_INT,masterNode,MPI_COMM_WORLD);
407 >        if (myturn == worldRank){
408 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
409 >          MPI_Send((void *)buffer.c_str(), sendBufferLength, MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
410 >        }
411 >      }
412 >    }
413  
414 <                        potatoes[which_node] = 0;
295 <                        MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
296 <                                 0, MPI_COMM_WORLD);
297 <                    }
414 > #endif // is_mpi
415  
416 <                    MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
300 <                             which_node, myPotato, MPI_COMM_WORLD,
301 <                             &istatus);
416 >  }
417  
418 <                    atomTypeString = MPIatomTypeString;
418 >  std::string DumpWriter::prepareDumpLine(StuntDouble* sd) {
419 >        
420 >    int index = sd->getGlobalIntegrableObjectIndex();
421 >    std::string type("pv");
422 >    std::string line;
423 >    char tempBuffer[4096];
424  
425 <                    myPotato++;
425 >    Vector3d pos;
426 >    Vector3d vel;
427 >    pos = sd->getPos();
428  
429 <                    MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato,
430 <                             MPI_COMM_WORLD, &istatus);
431 <                    myPotato++;
429 >    if (isinf(pos[0]) || isnan(pos[0]) ||
430 >        isinf(pos[1]) || isnan(pos[1]) ||
431 >        isinf(pos[2]) || isnan(pos[2]) ) {      
432 >      sprintf( painCave.errMsg,
433 >               "DumpWriter detected a numerical error writing the position"
434 >               " for object %d", index);      
435 >      painCave.isFatal = 1;
436 >      simError();
437 >    }
438  
439 <                    MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
439 >    vel = sd->getVel();        
440  
441 <                    if (msgLen == 13)
442 <                        isDirectional = 1;
443 <                    else
444 <                        isDirectional = 0;
441 >    if (isinf(vel[0]) || isnan(vel[0]) ||
442 >        isinf(vel[1]) || isnan(vel[1]) ||
443 >        isinf(vel[2]) || isnan(vel[2]) ) {      
444 >      sprintf( painCave.errMsg,
445 >               "DumpWriter detected a numerical error writing the velocity"
446 >               " for object %d", index);      
447 >      painCave.isFatal = 1;
448 >      simError();
449 >    }
450  
451 <                    // If we've survived to here, format the line:
451 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
452 >            pos[0], pos[1], pos[2],
453 >            vel[0], vel[1], vel[2]);                    
454 >    line += tempBuffer;
455  
456 <                    if (!isDirectional) {
457 <                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
458 <                                atomTypeString, atomData[0],
459 <                                atomData[1], atomData[2],
460 <                                atomData[3], atomData[4],
325 <                                atomData[5]);
456 >    if (sd->isDirectional()) {
457 >      type += "qj";
458 >      Quat4d q;
459 >      Vector3d ji;
460 >      q = sd->getQ();
461  
462 <                        strcat(writeLine,
463 <                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
464 <                    } else {
465 <                        sprintf(writeLine,
466 <                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
467 <                                atomTypeString,
468 <                                atomData[0],
469 <                                atomData[1],
470 <                                atomData[2],
471 <                                atomData[3],
337 <                                atomData[4],
338 <                                atomData[5],
339 <                                atomData[6],
340 <                                atomData[7],
341 <                                atomData[8],
342 <                                atomData[9],
343 <                                atomData[10],
344 <                                atomData[11],
345 <                                atomData[12]);
346 <                    }
462 >      if (isinf(q[0]) || isnan(q[0]) ||
463 >          isinf(q[1]) || isnan(q[1]) ||
464 >          isinf(q[2]) || isnan(q[2]) ||
465 >          isinf(q[3]) || isnan(q[3]) ) {      
466 >        sprintf( painCave.errMsg,
467 >                 "DumpWriter detected a numerical error writing the quaternion"
468 >                 " for object %d", index);      
469 >        painCave.isFatal = 1;
470 >        simError();
471 >      }
472  
473 <                    os << writeLine;
473 >      ji = sd->getJ();
474  
475 <                } // end for(int l =0)
475 >      if (isinf(ji[0]) || isnan(ji[0]) ||
476 >          isinf(ji[1]) || isnan(ji[1]) ||
477 >          isinf(ji[2]) || isnan(ji[2]) ) {      
478 >        sprintf( painCave.errMsg,
479 >                 "DumpWriter detected a numerical error writing the angular"
480 >                 " momentum for object %d", index);      
481 >        painCave.isFatal = 1;
482 >        simError();
483 >      }
484  
485 <                potatoes[which_node] = myPotato;
486 <            } else { //master node has current molecule
485 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
486 >              q[0], q[1], q[2], q[3],
487 >              ji[0], ji[1], ji[2]);
488 >      line += tempBuffer;
489 >    }
490  
491 <                mol = info_->getMoleculeByGlobalIndex(i);
491 >    if (needForceVector_) {
492 >      type += "f";
493 >      Vector3d frc = sd->getFrc();
494 >      if (isinf(frc[0]) || isnan(frc[0]) ||
495 >          isinf(frc[1]) || isnan(frc[1]) ||
496 >          isinf(frc[2]) || isnan(frc[2]) ) {      
497 >        sprintf( painCave.errMsg,
498 >                 "DumpWriter detected a numerical error writing the force"
499 >                 " for object %d", index);      
500 >        painCave.isFatal = 1;
501 >        simError();
502 >      }
503 >      sprintf(tempBuffer, " %13e %13e %13e",
504 >              frc[0], frc[1], frc[2]);
505 >      line += tempBuffer;
506 >      
507 >      if (sd->isDirectional()) {
508 >        type += "t";
509 >        Vector3d trq = sd->getTrq();        
510 >        if (isinf(trq[0]) || isnan(trq[0]) ||
511 >            isinf(trq[1]) || isnan(trq[1]) ||
512 >            isinf(trq[2]) || isnan(trq[2]) ) {      
513 >          sprintf( painCave.errMsg,
514 >                   "DumpWriter detected a numerical error writing the torque"
515 >                   " for object %d", index);      
516 >          painCave.isFatal = 1;
517 >          simError();
518 >        }        
519 >        sprintf(tempBuffer, " %13e %13e %13e",
520 >                trq[0], trq[1], trq[2]);
521 >        line += tempBuffer;
522 >      }      
523 >    }
524  
525 <                if (mol == NULL) {
526 <                    sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
527 <                    painCave.isFatal = 1;
360 <                    simError();
361 <                }
362 <                
363 <                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 <                    integrableObject = mol->nextIntegrableObject(ii)) {
365 <                        
366 <                    atomTypeString = integrableObject->getType().c_str();
525 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
526 >    return std::string(tempBuffer);
527 >  }
528  
529 <                    pos = integrableObject->getPos();
530 <                    vel = integrableObject->getVel();
529 >  std::string DumpWriter::prepareSiteLine(StuntDouble* sd, int ioIndex, int siteIndex) {
530 >        
531  
532 <                    atomData[0] = pos[0];
533 <                    atomData[1] = pos[1];
534 <                    atomData[2] = pos[2];
532 >    std::string id;
533 >    std::string type;
534 >    std::string line;
535 >    char tempBuffer[4096];
536  
537 <                    atomData[3] = vel[0];
538 <                    atomData[4] = vel[1];
539 <                    atomData[5] = vel[2];
537 >    if (sd->isRigidBody()) {
538 >      sprintf(tempBuffer, "%10d           ", ioIndex);
539 >      id = std::string(tempBuffer);
540 >    } else {
541 >      sprintf(tempBuffer, "%10d %10d", ioIndex, siteIndex);
542 >      id = std::string(tempBuffer);
543 >    }
544 >              
545 >    if (needFlucQ_) {
546 >      type += "cw";
547 >      RealType fqPos = sd->getFlucQPos();
548 >      if (isinf(fqPos) || isnan(fqPos) ) {      
549 >        sprintf( painCave.errMsg,
550 >                 "DumpWriter detected a numerical error writing the"
551 >                 " fluctuating charge for object %s", id.c_str());      
552 >        painCave.isFatal = 1;
553 >        simError();
554 >      }
555 >      sprintf(tempBuffer, " %13e ", fqPos);
556 >      line += tempBuffer;
557 >    
558 >      RealType fqVel = sd->getFlucQVel();
559 >      if (isinf(fqVel) || isnan(fqVel) ) {      
560 >        sprintf( painCave.errMsg,
561 >                 "DumpWriter detected a numerical error writing the"
562 >                 " fluctuating charge velocity for object %s", id.c_str());      
563 >        painCave.isFatal = 1;
564 >        simError();
565 >      }
566 >      sprintf(tempBuffer, " %13e ", fqVel);
567 >      line += tempBuffer;
568  
569 <                    isDirectional = 0;
569 >      if (needForceVector_) {
570 >        type += "g";
571 >        RealType fqFrc = sd->getFlucQFrc();        
572 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
573 >          sprintf( painCave.errMsg,
574 >                   "DumpWriter detected a numerical error writing the"
575 >                   " fluctuating charge force for object %s", id.c_str());      
576 >          painCave.isFatal = 1;
577 >          simError();
578 >        }
579 >        sprintf(tempBuffer, " %13e ", fqFrc);        
580 >        line += tempBuffer;
581 >      }
582 >    }
583  
584 <                    if (integrableObject->isDirectional()) {
585 <                        isDirectional = 1;
584 >    if (needElectricField_) {
585 >      type += "e";
586 >      Vector3d eField= sd->getElectricField();
587 >      if (isinf(eField[0]) || isnan(eField[0]) ||
588 >          isinf(eField[1]) || isnan(eField[1]) ||
589 >          isinf(eField[2]) || isnan(eField[2]) ) {      
590 >        sprintf( painCave.errMsg,
591 >                 "DumpWriter detected a numerical error writing the electric"
592 >                 " field for object %s", id.c_str());      
593 >        painCave.isFatal = 1;
594 >        simError();
595 >      }
596 >      sprintf(tempBuffer, " %13e %13e %13e",
597 >              eField[0], eField[1], eField[2]);
598 >      line += tempBuffer;
599 >    }
600  
384                        q = integrableObject->getQ();
385                        ji = integrableObject->getJ();
601  
602 <                        for(int j = 0; j < 6; j++) {
603 <                            atomData[j] = atomData[j];
604 <                        }
602 >    if (needParticlePot_) {
603 >      type += "u";
604 >      RealType particlePot = sd->getParticlePot();
605 >      if (isinf(particlePot) || isnan(particlePot)) {      
606 >        sprintf( painCave.errMsg,
607 >                 "DumpWriter detected a numerical error writing the particle "
608 >                 " potential for object %s", id.c_str());      
609 >        painCave.isFatal = 1;
610 >        simError();
611 >      }
612 >      sprintf(tempBuffer, " %13e", particlePot);
613 >      line += tempBuffer;
614 >    }
615 >    
616  
617 <                        atomData[6] = q[0];
618 <                        atomData[7] = q[1];
619 <                        atomData[8] = q[2];
394 <                        atomData[9] = q[3];
395 <
396 <                        atomData[10] = ji[0];
397 <                        atomData[11] = ji[1];
398 <                        atomData[12] = ji[2];
399 <                    }
400 <
401 <                    // If we've survived to here, format the line:
617 >    sprintf(tempBuffer, "%s %7s %s\n", id.c_str(), type.c_str(), line.c_str());
618 >    return std::string(tempBuffer);
619 >  }
620  
621 <                    if (!isDirectional) {
622 <                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
623 <                                atomTypeString, atomData[0],
406 <                                atomData[1], atomData[2],
407 <                                atomData[3], atomData[4],
408 <                                atomData[5]);
621 >  void DumpWriter::writeDump() {
622 >    writeFrame(*dumpFile_);
623 >  }
624  
625 <                        strcat(writeLine,
626 <                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
627 <                    } else {
628 <                        sprintf(writeLine,
629 <                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
630 <                                atomTypeString,
416 <                                atomData[0],
417 <                                atomData[1],
418 <                                atomData[2],
419 <                                atomData[3],
420 <                                atomData[4],
421 <                                atomData[5],
422 <                                atomData[6],
423 <                                atomData[7],
424 <                                atomData[8],
425 <                                atomData[9],
426 <                                atomData[10],
427 <                                atomData[11],
428 <                                atomData[12]);
429 <                    }
625 >  void DumpWriter::writeEor() {
626 >    std::ostream* eorStream;
627 >    
628 > #ifdef IS_MPI
629 >    if (worldRank == 0) {
630 > #endif // is_mpi
631  
632 +      eorStream = createOStream(eorFilename_);
633  
634 <                    os << writeLine;
634 > #ifdef IS_MPI
635 >    }
636 > #endif // is_mpi    
637  
638 <                } //end for(iter = integrableObject.begin())
435 <            }
436 <        } //end for(i = 0; i < mpiSim->getNmol())
638 >    writeFrame(*eorStream);
639  
640 <        os.flush();
641 <        
642 <        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
643 <        MPIcheckPoint();
640 > #ifdef IS_MPI
641 >    if (worldRank == 0) {
642 > #endif // is_mpi
643 >      writeClosing(*eorStream);
644 >      delete eorStream;
645 > #ifdef IS_MPI
646 >    }
647 > #endif // is_mpi  
648  
649 <        delete [] potatoes;
444 <    } else {
649 >  }
650  
446        // worldRank != 0, so I'm a remote node.  
651  
652 <        // Set my magic potato to 0:
652 >  void DumpWriter::writeDumpAndEor() {
653 >    std::vector<std::streambuf*> buffers;
654 >    std::ostream* eorStream;
655 > #ifdef IS_MPI
656 >    if (worldRank == 0) {
657 > #endif // is_mpi
658  
659 <        myPotato = 0;
659 >      buffers.push_back(dumpFile_->rdbuf());
660  
661 <        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
661 >      eorStream = createOStream(eorFilename_);
662  
663 <            // Am I the node which has this integrableObject?
664 <            int whichNode = info_->getMolToProc(i);
665 <            if (whichNode == worldRank) {
666 <                if (myPotato + 1 >= MAXTAG) {
663 >      buffers.push_back(eorStream->rdbuf());
664 >        
665 > #ifdef IS_MPI
666 >    }
667 > #endif // is_mpi    
668  
669 <                    // The potato was going to exceed the maximum value,
670 <                    // so wrap this processor potato back to 0 (and block until
461 <                    // node 0 says we can go:
669 >    TeeBuf tbuf(buffers.begin(), buffers.end());
670 >    std::ostream os(&tbuf);
671  
672 <                    MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
464 <                             &istatus);
465 <                }
672 >    writeFrame(os);
673  
674 <                mol = info_->getMoleculeByGlobalIndex(i);
674 > #ifdef IS_MPI
675 >    if (worldRank == 0) {
676 > #endif // is_mpi
677 >      writeClosing(*eorStream);
678 >      delete eorStream;
679 > #ifdef IS_MPI
680 >    }
681 > #endif // is_mpi  
682 >    
683 >  }
684  
685 <                
470 <                nCurObj = mol->getNIntegrableObjects();
685 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
686  
687 <                MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
688 <                myPotato++;
689 <
690 <                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
691 <                    integrableObject = mol->nextIntegrableObject(ii)) {
692 <
478 <                    if (myPotato + 2 >= MAXTAG) {
479 <
480 <                        // The potato was going to exceed the maximum value,
481 <                        // so wrap this processor potato back to 0 (and block until
482 <                        // node 0 says we can go:
483 <
484 <                        MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
485 <                                 &istatus);
486 <                    }
487 <
488 <                    atomTypeString = integrableObject->getType().c_str();
489 <
490 <                    pos = integrableObject->getPos();
491 <                    vel = integrableObject->getVel();
492 <
493 <                    atomData[0] = pos[0];
494 <                    atomData[1] = pos[1];
495 <                    atomData[2] = pos[2];
496 <
497 <                    atomData[3] = vel[0];
498 <                    atomData[4] = vel[1];
499 <                    atomData[5] = vel[2];
500 <
501 <                    isDirectional = 0;
502 <
503 <                    if (integrableObject->isDirectional()) {
504 <                        isDirectional = 1;
505 <
506 <                        q = integrableObject->getQ();
507 <                        ji = integrableObject->getJ();
508 <
509 <                        atomData[6] = q[0];
510 <                        atomData[7] = q[1];
511 <                        atomData[8] = q[2];
512 <                        atomData[9] = q[3];
513 <
514 <                        atomData[10] = ji[0];
515 <                        atomData[11] = ji[1];
516 <                        atomData[12] = ji[2];
517 <                    }
518 <
519 <                    strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
520 <
521 <                    // null terminate the  std::string before sending (just in case):
522 <                    MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
523 <
524 <                    MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
525 <                             myPotato, MPI_COMM_WORLD);
526 <
527 <                    myPotato++;
528 <
529 <                    if (isDirectional) {
530 <                        MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato,
531 <                                 MPI_COMM_WORLD);
532 <                    } else {
533 <                        MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato,
534 <                                 MPI_COMM_WORLD);
535 <                    }
536 <
537 <                    myPotato++;
538 <                }
539 <                    
540 <            }
541 <            
542 <        }
543 <        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
544 <        MPIcheckPoint();
687 >    std::ostream* newOStream;
688 > #ifdef HAVE_ZLIB
689 >    if (needCompression_) {
690 >      newOStream = new ogzstream(filename.c_str());
691 >    } else {
692 >      newOStream = new std::ofstream(filename.c_str());
693      }
694 + #else
695 +    newOStream = new std::ofstream(filename.c_str());
696 + #endif
697 +    //write out MetaData first
698 +    (*newOStream) << "<OpenMD version=2>" << std::endl;
699 +    (*newOStream) << "  <MetaData>" << std::endl;
700 +    (*newOStream) << info_->getRawMetaData();
701 +    (*newOStream) << "  </MetaData>" << std::endl;
702 +    return newOStream;
703 +  }
704  
705 < #endif // is_mpi
705 >  void DumpWriter::writeClosing(std::ostream& os) {
706  
707 < }
707 >    os << "</OpenMD>\n";
708 >    os.flush();
709 >  }
710  
711 < }//end namespace oopse
711 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 251 by tim, Wed Jan 12 23:24:55 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1769 by gezelter, Mon Jul 9 14:15:52 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines