ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 251 by tim, Wed Jan 12 23:24:55 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1746 by gezelter, Wed Jun 6 02:18:54 2012 UTC

# Line 1 | Line 1
1 < /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include "io/DumpWriter.hpp"
44   #include "primitives/Molecule.hpp"
45   #include "utils/simError.h"
46 + #include "io/basic_teebuf.hpp"
47 + #include "io/gzstream.hpp"
48 + #include "io/Globals.hpp"
49  
50 +
51   #ifdef IS_MPI
52   #include <mpi.h>
53   #endif //is_mpi
54  
55 < namespace oopse {
55 > using namespace std;
56 > namespace OpenMD {
57  
58 < DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
59 <                   : info_(info), filename_(filename){
58 >  DumpWriter::DumpWriter(SimInfo* info)
59 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
60 >
61 >    Globals* simParams = info->getSimParams();
62 >    needCompression_   = simParams->getCompressDumpFile();
63 >    needForceVector_   = simParams->getOutputForceVector();
64 >    needParticlePot_   = simParams->getOutputParticlePotential();
65 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
66 >    needElectricField_ = simParams->getOutputElectricField();
67 >
68 >    createDumpFile_ = true;
69 > #ifdef HAVE_LIBZ
70 >    if (needCompression_) {
71 >      filename_ += ".gz";
72 >      eorFilename_ += ".gz";
73 >    }
74 > #endif
75 >    
76   #ifdef IS_MPI
77  
78      if (worldRank == 0) {
79   #endif // is_mpi
80 +        
81 +      dumpFile_ = createOStream(filename_);
82  
83 <        dumpFile_.open(filename_.c_str(), std::ios::out | std::ios::trunc);
83 >      if (!dumpFile_) {
84 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
85 >                filename_.c_str());
86 >        painCave.isFatal = 1;
87 >        simError();
88 >      }
89  
61        if (!dumpFile_) {
62            sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
63                    filename_.c_str());
64            painCave.isFatal = 1;
65            simError();
66        }
67
90   #ifdef IS_MPI
91  
92      }
93  
72    sprintf(checkPointMsg, "Sucessfully opened output file for dumping.\n");
73    MPIcheckPoint();
74
94   #endif // is_mpi
95  
96 < }
96 >  }
97  
79 DumpWriter::~DumpWriter() {
98  
99 +  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
100 +    : info_(info), filename_(filename){
101 +
102 +    Globals* simParams = info->getSimParams();
103 +    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
104 +
105 +    needCompression_   = simParams->getCompressDumpFile();
106 +    needForceVector_   = simParams->getOutputForceVector();
107 +    needParticlePot_   = simParams->getOutputParticlePotential();
108 +    needFlucQ_         = simParams->getOutputFluctuatingCharges();
109 +    needElectricField_ = simParams->getOutputElectricField();
110 +
111 +    createDumpFile_ = true;
112 + #ifdef HAVE_LIBZ
113 +    if (needCompression_) {
114 +      filename_ += ".gz";
115 +      eorFilename_ += ".gz";
116 +    }
117 + #endif
118 +    
119   #ifdef IS_MPI
120  
121      if (worldRank == 0) {
122   #endif // is_mpi
123  
124 <        dumpFile_.close();
124 >      
125 >      dumpFile_ = createOStream(filename_);
126  
127 +      if (!dumpFile_) {
128 +        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
129 +                filename_.c_str());
130 +        painCave.isFatal = 1;
131 +        simError();
132 +      }
133 +
134   #ifdef IS_MPI
135  
136      }
137  
138   #endif // is_mpi
139  
140 < }
140 >  }
141 >  
142 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
143 >    : info_(info), filename_(filename){
144 >    
145 >    Globals* simParams = info->getSimParams();
146 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
147 >    
148 >    needCompression_   = simParams->getCompressDumpFile();
149 >    needForceVector_   = simParams->getOutputForceVector();
150 >    needParticlePot_   = simParams->getOutputParticlePotential();
151 >    needFlucQ_         = simParams->getOutputFluctuatingCharges();
152 >    needElectricField_ = simParams->getOutputElectricField();
153  
154 < void DumpWriter::writeCommentLine(std::ostream& os, Snapshot* s) {
154 > #ifdef HAVE_LIBZ
155 >    if (needCompression_) {
156 >      filename_ += ".gz";
157 >      eorFilename_ += ".gz";
158 >    }
159 > #endif
160 >    
161 > #ifdef IS_MPI
162 >    
163 >    if (worldRank == 0) {
164 > #endif // is_mpi
165 >      
166 >      createDumpFile_ = writeDumpFile;
167 >      if (createDumpFile_) {
168 >        dumpFile_ = createOStream(filename_);
169 >      
170 >        if (!dumpFile_) {
171 >          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
172 >                  filename_.c_str());
173 >          painCave.isFatal = 1;
174 >          simError();
175 >        }
176 >      }
177 > #ifdef IS_MPI
178 >      
179 >    }
180  
98    double currentTime;
99    Mat3x3d hmat;
100    double chi;
101    double integralOfChiDt;
102    Mat3x3d eta;
181      
182 <    currentTime = s->getTime();
105 <    hmat = s->getHmat();
106 <    chi = s->getChi();
107 <    integralOfChiDt = s->getIntegralOfChiDt();
108 <    eta = s->getEta();
182 > #endif // is_mpi
183      
184 <    os << currentTime << ";\t"
111 <         << hmat(0, 0) << "\t" << hmat(1, 0) << "\t" << hmat(2, 0) << ";\t"
112 <         << hmat(0, 1) << "\t" << hmat(1, 1) << "\t" << hmat(2, 1) << ";\t"
113 <         << hmat(0, 2) << "\t" << hmat(1, 2) << "\t" << hmat(2, 2) << ";\t";
184 >  }
185  
186 <    //write out additional parameters, such as chi and eta
186 >  DumpWriter::~DumpWriter() {
187  
188 <    os << chi << "\t" << integralOfChiDt << "\t;";
188 > #ifdef IS_MPI
189  
190 <    os << eta(0, 0) << "\t" << eta(1, 0) << "\t" << eta(2, 0) << ";\t"
191 <         << eta(0, 1) << "\t" << eta(1, 1) << "\t" << eta(2, 1) << ";\t"
192 <         << eta(0, 2) << "\t" << eta(1, 2) << "\t" << eta(2, 2) << ";";
193 <        
194 <    os << std::endl;
195 < }
190 >    if (worldRank == 0) {
191 > #endif // is_mpi
192 >      if (createDumpFile_){
193 >        writeClosing(*dumpFile_);
194 >        delete dumpFile_;
195 >      }
196 > #ifdef IS_MPI
197  
198 < void DumpWriter::writeFrame(std::ostream& os) {
127 <    const int BUFFERSIZE = 2000;
128 <    const int MINIBUFFERSIZE = 100;
198 >    }
199  
200 <    char tempBuffer[BUFFERSIZE];
131 <    char writeLine[BUFFERSIZE];
200 > #endif // is_mpi
201  
202 <    Quat4d q;
134 <    Vector3d ji;
135 <    Vector3d pos;
136 <    Vector3d vel;
202 >  }
203  
204 <    Molecule* mol;
139 <    StuntDouble* integrableObject;
140 <    SimInfo::MoleculeIterator mi;
141 <    Molecule::IntegrableObjectIterator ii;
142 <  
143 <    int nTotObjects;    
144 <    nTotObjects = info_->getNGlobalIntegrableObjects();
204 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
205  
206 < #ifndef IS_MPI
206 >    char buffer[1024];
207  
208 +    os << "    <FrameData>\n";
209  
210 <    os << nTotObjects << "\n";
150 <        
151 <    writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
210 >    RealType currentTime = s->getTime();
211  
212 <    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
212 >    if (isinf(currentTime) || isnan(currentTime)) {      
213 >      sprintf( painCave.errMsg,
214 >               "DumpWriter detected a numerical error writing the time");      
215 >      painCave.isFatal = 1;
216 >      simError();
217 >    }
218 >    
219 >    sprintf(buffer, "        Time: %.10g\n", currentTime);
220 >    os << buffer;
221  
222 <        for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
223 <            integrableObject = mol->nextIntegrableObject(ii)) {
157 <                
222 >    Mat3x3d hmat;
223 >    hmat = s->getHmat();
224  
225 <            pos = integrableObject->getPos();
226 <            vel = integrableObject->getVel();
225 >    for (unsigned int i = 0; i < 3; i++) {
226 >      for (unsigned int j = 0; j < 3; j++) {
227 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
228 >          sprintf( painCave.errMsg,
229 >                   "DumpWriter detected a numerical error writing the box");
230 >          painCave.isFatal = 1;
231 >          simError();
232 >        }        
233 >      }
234 >    }
235 >    
236 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
237 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
238 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
239 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
240 >    os << buffer;
241  
242 <            sprintf(tempBuffer, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
243 <                    integrableObject->getType().c_str(),
244 <                    pos[0], pos[1], pos[2],
245 <                    vel[0], vel[1], vel[2]);
246 <
247 <            strcpy(writeLine, tempBuffer);
248 <
249 <            if (integrableObject->isDirectional()) {
170 <                q = integrableObject->getQ();
171 <                ji = integrableObject->getJ();
172 <
173 <                sprintf(tempBuffer, "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
174 <                        q[0], q[1], q[2], q[3],
175 <                        ji[0], ji[1], ji[2]);
176 <                strcat(writeLine, tempBuffer);
177 <            } else {
178 <                strcat(writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
179 <            }
180 <
181 <            os << writeLine;
182 <
183 <        }
242 >    RealType chi = s->getChi();
243 >    RealType integralOfChiDt = s->getIntegralOfChiDt();
244 >    if (isinf(chi) || isnan(chi) ||
245 >        isinf(integralOfChiDt) || isnan(integralOfChiDt)) {      
246 >      sprintf( painCave.errMsg,
247 >               "DumpWriter detected a numerical error writing the thermostat");
248 >      painCave.isFatal = 1;
249 >      simError();
250      }
251 +    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", chi, integralOfChiDt);
252 +    os << buffer;
253  
254 < #else // is_mpi
255 <    /*********************************************************************
188 <     * Documentation?  You want DOCUMENTATION?
189 <     *
190 <     * Why all the potatoes below?  
191 <     *
192 <     * To make a long story short, the original version of DumpWriter
193 <     * worked in the most inefficient way possible.  Node 0 would
194 <     * poke each of the node for an individual atom's formatted data
195 <     * as node 0 worked its way down the global index. This was particularly
196 <     * inefficient since the method blocked all processors at every atom
197 <     * (and did it twice!).
198 <     *
199 <     * An intermediate version of DumpWriter could be described from Node
200 <     * zero's perspective as follows:
201 <     *
202 <     *  1) Have 100 of your friends stand in a circle.
203 <     *  2) When you say go, have all of them start tossing potatoes at
204 <     *     you (one at a time).
205 <     *  3) Catch the potatoes.
206 <     *
207 <     * It was an improvement, but MPI has buffers and caches that could
208 <     * best be described in this analogy as "potato nets", so there's no
209 <     * need to block the processors atom-by-atom.
210 <     *
211 <     * This new and improved DumpWriter works in an even more efficient
212 <     * way:
213 <     *
214 <     *  1) Have 100 of your friend stand in a circle.
215 <     *  2) When you say go, have them start tossing 5-pound bags of
216 <     *     potatoes at you.
217 <     *  3) Once you've caught a friend's bag of potatoes,
218 <     *     toss them a spud to let them know they can toss another bag.
219 <     *
220 <     * How's THAT for documentation?
221 <     *
222 <     *********************************************************************/
223 <    const int masterNode = 0;
254 >    Mat3x3d eta;
255 >    eta = s->getEta();
256  
257 <    int * potatoes;
258 <    int myPotato;
259 <    int nProc;
260 <    int which_node;
261 <    double atomData[13];
262 <    int isDirectional;
263 <    const char * atomTypeString;
264 <    char MPIatomTypeString[MINIBUFFERSIZE];
265 <    int msgLen; // the length of message actually recieved at master nodes
234 <    int haveError;
235 <    MPI_Status istatus;
236 <    int nCurObj;
237 <    
238 <    // code to find maximum tag value
239 <    int * tagub;
240 <    int flag;
241 <    int MAXTAG;
242 <    MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
243 <
244 <    if (flag) {
245 <        MAXTAG = *tagub;
246 <    } else {
247 <        MAXTAG = 32767;
257 >    for (unsigned int i = 0; i < 3; i++) {
258 >      for (unsigned int j = 0; j < 3; j++) {
259 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
260 >          sprintf( painCave.errMsg,
261 >                   "DumpWriter detected a numerical error writing the barostat");
262 >          painCave.isFatal = 1;
263 >          simError();
264 >        }        
265 >      }
266      }
267  
268 <    if (worldRank == masterNode) { //master node (node 0) is responsible for writing the dump file
268 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
269 >            eta(0, 0), eta(1, 0), eta(2, 0),
270 >            eta(0, 1), eta(1, 1), eta(2, 1),
271 >            eta(0, 2), eta(1, 2), eta(2, 2));
272 >    os << buffer;
273  
274 <        // Node 0 needs a list of the magic potatoes for each processor;
274 >    os << "    </FrameData>\n";
275 >  }
276  
277 <        MPI_Comm_size(MPI_COMM_WORLD, &nProc);
255 <        potatoes = new int[nProc];
277 >  void DumpWriter::writeFrame(std::ostream& os) {
278  
279 <        //write out the comment lines
280 <        for(int i = 0; i < nProc; i++) {
281 <            potatoes[i] = 0;
260 <        }
279 > #ifdef IS_MPI
280 >    MPI_Status istatus;
281 > #endif
282  
283 +    Molecule* mol;
284 +    StuntDouble* integrableObject;
285 +    SimInfo::MoleculeIterator mi;
286 +    Molecule::IntegrableObjectIterator ii;
287  
288 <        os << nTotObjects << "\n";
289 <        writeCommentLine(os, info_->getSnapshotManager()->getCurrentSnapshot());
288 > #ifndef IS_MPI
289 >    os << "  <Snapshot>\n";
290 >
291 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
292  
293 <        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
293 >    os << "    <StuntDoubles>\n";
294 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
295  
296 <            // Get the Node number which has this atom;
296 >      
297 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;  
298 >           integrableObject = mol->nextIntegrableObject(ii)) {  
299 >          os << prepareDumpLine(integrableObject);
300 >          
301 >      }
302 >    }    
303 >    os << "    </StuntDoubles>\n";
304 >    
305 >    os << "  </Snapshot>\n";
306  
307 <            which_node = info_->getMolToProc(i);
307 >    os.flush();
308 > #else
309 >    //every node prepares the dump lines for integrable objects belong to itself
310 >    std::string buffer;
311 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
312  
272            if (which_node != masterNode) { //current molecule is in slave node
273                if (potatoes[which_node] + 1 >= MAXTAG) {
274                    // The potato was going to exceed the maximum value,
275                    // so wrap this processor potato back to 0:        
313  
314 <                    potatoes[which_node] = 0;
315 <                    MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0,
316 <                             MPI_COMM_WORLD);
317 <                }
314 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(ii)) {  
316 >          buffer += prepareDumpLine(integrableObject);
317 >      }
318 >    }
319 >    
320 >    const int masterNode = 0;
321 >    int nProc;
322 >    MPI_Comm_size(MPI_COMM_WORLD, &nProc);
323 >    if (worldRank == masterNode) {      
324 >      os << "  <Snapshot>\n";  
325 >      writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
326 >      os << "    <StuntDoubles>\n";
327 >        
328 >      os << buffer;
329  
330 <                myPotato = potatoes[which_node];
330 >      for (int i = 1; i < nProc; ++i) {
331  
332 <                //recieve the number of integrableObject in current molecule
333 <                MPI_Recv(&nCurObj, 1, MPI_INT, which_node, myPotato,
286 <                         MPI_COMM_WORLD, &istatus);
287 <                myPotato++;
332 >        // receive the length of the string buffer that was
333 >        // prepared by processor i
334  
335 <                for(int l = 0; l < nCurObj; l++) {
336 <                    if (potatoes[which_node] + 2 >= MAXTAG) {
337 <                        // The potato was going to exceed the maximum value,
338 <                        // so wrap this processor potato back to 0:        
335 >        MPI_Bcast(&i, 1, MPI_INT,masterNode,MPI_COMM_WORLD);
336 >        int recvLength;
337 >        MPI_Recv(&recvLength, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &istatus);
338 >        char* recvBuffer = new char[recvLength];
339 >        if (recvBuffer == NULL) {
340 >        } else {
341 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i, 0, MPI_COMM_WORLD, &istatus);
342 >          os << recvBuffer;
343 >          delete [] recvBuffer;
344 >        }
345 >      }
346 >      os << "    </StuntDoubles>\n";
347 >      
348 >      os << "  </Snapshot>\n";
349 >      os.flush();
350 >    } else {
351 >      int sendBufferLength = buffer.size() + 1;
352 >      int myturn = 0;
353 >      for (int i = 1; i < nProc; ++i){
354 >        MPI_Bcast(&myturn,1, MPI_INT,masterNode,MPI_COMM_WORLD);
355 >        if (myturn == worldRank){
356 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
357 >          MPI_Send((void *)buffer.c_str(), sendBufferLength, MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
358 >        }
359 >      }
360 >    }
361  
362 <                        potatoes[which_node] = 0;
295 <                        MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node,
296 <                                 0, MPI_COMM_WORLD);
297 <                    }
362 > #endif // is_mpi
363  
364 <                    MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR,
300 <                             which_node, myPotato, MPI_COMM_WORLD,
301 <                             &istatus);
364 >  }
365  
366 <                    atomTypeString = MPIatomTypeString;
366 >  std::string DumpWriter::prepareDumpLine(StuntDouble* integrableObject) {
367 >        
368 >    int index = integrableObject->getGlobalIntegrableObjectIndex();
369 >    std::string type("pv");
370 >    std::string line;
371 >    char tempBuffer[4096];
372  
373 <                    myPotato++;
373 >    Vector3d pos;
374 >    Vector3d vel;
375 >    pos = integrableObject->getPos();
376  
377 <                    MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato,
378 <                             MPI_COMM_WORLD, &istatus);
379 <                    myPotato++;
380 <
381 <                    MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
382 <
383 <                    if (msgLen == 13)
384 <                        isDirectional = 1;
385 <                    else
316 <                        isDirectional = 0;
317 <
318 <                    // If we've survived to here, format the line:
377 >    if (isinf(pos[0]) || isnan(pos[0]) ||
378 >        isinf(pos[1]) || isnan(pos[1]) ||
379 >        isinf(pos[2]) || isnan(pos[2]) ) {      
380 >      sprintf( painCave.errMsg,
381 >               "DumpWriter detected a numerical error writing the position"
382 >               " for object %d", index);      
383 >      painCave.isFatal = 1;
384 >      simError();
385 >    }
386  
387 <                    if (!isDirectional) {
321 <                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
322 <                                atomTypeString, atomData[0],
323 <                                atomData[1], atomData[2],
324 <                                atomData[3], atomData[4],
325 <                                atomData[5]);
387 >    vel = integrableObject->getVel();          
388  
389 <                        strcat(writeLine,
390 <                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
391 <                    } else {
392 <                        sprintf(writeLine,
393 <                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
394 <                                atomTypeString,
395 <                                atomData[0],
396 <                                atomData[1],
397 <                                atomData[2],
336 <                                atomData[3],
337 <                                atomData[4],
338 <                                atomData[5],
339 <                                atomData[6],
340 <                                atomData[7],
341 <                                atomData[8],
342 <                                atomData[9],
343 <                                atomData[10],
344 <                                atomData[11],
345 <                                atomData[12]);
346 <                    }
389 >    if (isinf(vel[0]) || isnan(vel[0]) ||
390 >        isinf(vel[1]) || isnan(vel[1]) ||
391 >        isinf(vel[2]) || isnan(vel[2]) ) {      
392 >      sprintf( painCave.errMsg,
393 >               "DumpWriter detected a numerical error writing the velocity"
394 >               " for object %d", index);      
395 >      painCave.isFatal = 1;
396 >      simError();
397 >    }
398  
399 <                    os << writeLine;
399 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
400 >            pos[0], pos[1], pos[2],
401 >            vel[0], vel[1], vel[2]);                    
402 >    line += tempBuffer;
403  
404 <                } // end for(int l =0)
404 >    if (integrableObject->isDirectional()) {
405 >      type += "qj";
406 >      Quat4d q;
407 >      Vector3d ji;
408 >      q = integrableObject->getQ();
409  
410 <                potatoes[which_node] = myPotato;
411 <            } else { //master node has current molecule
410 >      if (isinf(q[0]) || isnan(q[0]) ||
411 >          isinf(q[1]) || isnan(q[1]) ||
412 >          isinf(q[2]) || isnan(q[2]) ||
413 >          isinf(q[3]) || isnan(q[3]) ) {      
414 >        sprintf( painCave.errMsg,
415 >                 "DumpWriter detected a numerical error writing the quaternion"
416 >                 " for object %d", index);      
417 >        painCave.isFatal = 1;
418 >        simError();
419 >      }
420  
421 <                mol = info_->getMoleculeByGlobalIndex(i);
421 >      ji = integrableObject->getJ();
422  
423 <                if (mol == NULL) {
424 <                    sprintf(painCave.errMsg, "Molecule not found on node %d!", worldRank);
425 <                    painCave.isFatal = 1;
426 <                    simError();
427 <                }
428 <                
429 <                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
430 <                    integrableObject = mol->nextIntegrableObject(ii)) {
431 <                        
366 <                    atomTypeString = integrableObject->getType().c_str();
423 >      if (isinf(ji[0]) || isnan(ji[0]) ||
424 >          isinf(ji[1]) || isnan(ji[1]) ||
425 >          isinf(ji[2]) || isnan(ji[2]) ) {      
426 >        sprintf( painCave.errMsg,
427 >                 "DumpWriter detected a numerical error writing the angular"
428 >                 " momentum for object %d", index);      
429 >        painCave.isFatal = 1;
430 >        simError();
431 >      }
432  
433 <                    pos = integrableObject->getPos();
434 <                    vel = integrableObject->getVel();
433 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
434 >              q[0], q[1], q[2], q[3],
435 >              ji[0], ji[1], ji[2]);
436 >      line += tempBuffer;
437 >    }
438  
439 <                    atomData[0] = pos[0];
440 <                    atomData[1] = pos[1];
441 <                    atomData[2] = pos[2];
439 >    if (needForceVector_) {
440 >      type += "f";
441 >      Vector3d frc = integrableObject->getFrc();
442 >      if (isinf(frc[0]) || isnan(frc[0]) ||
443 >          isinf(frc[1]) || isnan(frc[1]) ||
444 >          isinf(frc[2]) || isnan(frc[2]) ) {      
445 >        sprintf( painCave.errMsg,
446 >                 "DumpWriter detected a numerical error writing the force"
447 >                 " for object %d", index);      
448 >        painCave.isFatal = 1;
449 >        simError();
450 >      }
451 >      sprintf(tempBuffer, " %13e %13e %13e",
452 >              frc[0], frc[1], frc[2]);
453 >      line += tempBuffer;
454 >      
455 >      if (integrableObject->isDirectional()) {
456 >        type += "t";
457 >        Vector3d trq = integrableObject->getTrq();        
458 >        if (isinf(trq[0]) || isnan(trq[0]) ||
459 >            isinf(trq[1]) || isnan(trq[1]) ||
460 >            isinf(trq[2]) || isnan(trq[2]) ) {      
461 >          sprintf( painCave.errMsg,
462 >                   "DumpWriter detected a numerical error writing the torque"
463 >                   " for object %d", index);      
464 >          painCave.isFatal = 1;
465 >          simError();
466 >        }        
467 >        sprintf(tempBuffer, " %13e %13e %13e",
468 >                trq[0], trq[1], trq[2]);
469 >        line += tempBuffer;
470 >      }      
471 >    }
472  
473 <                    atomData[3] = vel[0];
474 <                    atomData[4] = vel[1];
475 <                    atomData[5] = vel[2];
473 >    if (needParticlePot_) {
474 >      type += "u";
475 >      RealType particlePot = integrableObject->getParticlePot();
476 >      if (isinf(particlePot) || isnan(particlePot)) {      
477 >        sprintf( painCave.errMsg,
478 >                 "DumpWriter detected a numerical error writing the particle "
479 >                 " potential for object %d", index);      
480 >        painCave.isFatal = 1;
481 >        simError();
482 >      }
483 >      sprintf(tempBuffer, " %13e", particlePot);
484 >      line += tempBuffer;
485 >    }
486 >    
487 >    if (needFlucQ_) {
488 >      type += "cw";
489 >      RealType fqPos = integrableObject->getFlucQPos();
490 >      if (isinf(fqPos) || isnan(fqPos) ) {      
491 >        sprintf( painCave.errMsg,
492 >                 "DumpWriter detected a numerical error writing the"
493 >                 " fluctuating charge for object %d", index);      
494 >        painCave.isFatal = 1;
495 >        simError();
496 >      }
497 >      sprintf(tempBuffer, " %13e ", fqPos);
498 >      line += tempBuffer;
499 >    
500 >      RealType fqVel = integrableObject->getFlucQVel();
501 >      if (isinf(fqVel) || isnan(fqVel) ) {      
502 >        sprintf( painCave.errMsg,
503 >                 "DumpWriter detected a numerical error writing the"
504 >                 " fluctuating charge velocity for object %d", index);      
505 >        painCave.isFatal = 1;
506 >        simError();
507 >      }
508 >      sprintf(tempBuffer, " %13e ", fqVel);
509 >      line += tempBuffer;
510  
511 <                    isDirectional = 0;
511 >      if (needForceVector_) {
512 >        type += "g";
513 >        RealType fqFrc = integrableObject->getFlucQFrc();        
514 >        if (isinf(fqFrc) || isnan(fqFrc) ) {      
515 >          sprintf( painCave.errMsg,
516 >                   "DumpWriter detected a numerical error writing the"
517 >                   " fluctuating charge force for object %d", index);      
518 >          painCave.isFatal = 1;
519 >          simError();
520 >        }
521 >        sprintf(tempBuffer, " %13e ", fqFrc);        
522 >        line += tempBuffer;
523 >      }
524 >    }
525  
526 <                    if (integrableObject->isDirectional()) {
527 <                        isDirectional = 1;
526 >    if (needElectricField_) {
527 >      type += "e";
528 >      Vector3d eField= integrableObject->getElectricField();
529 >      if (isinf(eField[0]) || isnan(eField[0]) ||
530 >          isinf(eField[1]) || isnan(eField[1]) ||
531 >          isinf(eField[2]) || isnan(eField[2]) ) {      
532 >        sprintf( painCave.errMsg,
533 >                 "DumpWriter detected a numerical error writing the electric"
534 >                 " field for object %d", index);      
535 >        painCave.isFatal = 1;
536 >        simError();
537 >      }
538 >      sprintf(tempBuffer, " %13e %13e %13e",
539 >              eField[0], eField[1], eField[2]);
540 >      line += tempBuffer;
541 >    }
542  
543 <                        q = integrableObject->getQ();
544 <                        ji = integrableObject->getJ();
543 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
544 >    return std::string(tempBuffer);
545 >  }
546  
547 <                        for(int j = 0; j < 6; j++) {
548 <                            atomData[j] = atomData[j];
549 <                        }
547 >  void DumpWriter::writeDump() {
548 >    writeFrame(*dumpFile_);
549 >  }
550  
551 <                        atomData[6] = q[0];
552 <                        atomData[7] = q[1];
553 <                        atomData[8] = q[2];
554 <                        atomData[9] = q[3];
551 >  void DumpWriter::writeEor() {
552 >    std::ostream* eorStream;
553 >    
554 > #ifdef IS_MPI
555 >    if (worldRank == 0) {
556 > #endif // is_mpi
557  
558 <                        atomData[10] = ji[0];
397 <                        atomData[11] = ji[1];
398 <                        atomData[12] = ji[2];
399 <                    }
558 >      eorStream = createOStream(eorFilename_);
559  
560 <                    // If we've survived to here, format the line:
560 > #ifdef IS_MPI
561 >    }
562 > #endif // is_mpi    
563  
564 <                    if (!isDirectional) {
404 <                        sprintf(writeLine, "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
405 <                                atomTypeString, atomData[0],
406 <                                atomData[1], atomData[2],
407 <                                atomData[3], atomData[4],
408 <                                atomData[5]);
564 >    writeFrame(*eorStream);
565  
566 <                        strcat(writeLine,
567 <                               "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n");
568 <                    } else {
569 <                        sprintf(writeLine,
570 <                                "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
571 <                                atomTypeString,
572 <                                atomData[0],
573 <                                atomData[1],
418 <                                atomData[2],
419 <                                atomData[3],
420 <                                atomData[4],
421 <                                atomData[5],
422 <                                atomData[6],
423 <                                atomData[7],
424 <                                atomData[8],
425 <                                atomData[9],
426 <                                atomData[10],
427 <                                atomData[11],
428 <                                atomData[12]);
429 <                    }
566 > #ifdef IS_MPI
567 >    if (worldRank == 0) {
568 > #endif // is_mpi
569 >      writeClosing(*eorStream);
570 >      delete eorStream;
571 > #ifdef IS_MPI
572 >    }
573 > #endif // is_mpi  
574  
575 +  }
576  
432                    os << writeLine;
577  
578 <                } //end for(iter = integrableObject.begin())
579 <            }
580 <        } //end for(i = 0; i < mpiSim->getNmol())
578 >  void DumpWriter::writeDumpAndEor() {
579 >    std::vector<std::streambuf*> buffers;
580 >    std::ostream* eorStream;
581 > #ifdef IS_MPI
582 >    if (worldRank == 0) {
583 > #endif // is_mpi
584  
585 <        os.flush();
439 <        
440 <        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
441 <        MPIcheckPoint();
585 >      buffers.push_back(dumpFile_->rdbuf());
586  
587 <        delete [] potatoes;
444 <    } else {
587 >      eorStream = createOStream(eorFilename_);
588  
589 <        // worldRank != 0, so I'm a remote node.  
589 >      buffers.push_back(eorStream->rdbuf());
590 >        
591 > #ifdef IS_MPI
592 >    }
593 > #endif // is_mpi    
594  
595 <        // Set my magic potato to 0:
595 >    TeeBuf tbuf(buffers.begin(), buffers.end());
596 >    std::ostream os(&tbuf);
597  
598 <        myPotato = 0;
598 >    writeFrame(os);
599  
600 <        for(int i = 0; i < info_->getNGlobalMolecules(); i++) {
600 > #ifdef IS_MPI
601 >    if (worldRank == 0) {
602 > #endif // is_mpi
603 >      writeClosing(*eorStream);
604 >      delete eorStream;
605 > #ifdef IS_MPI
606 >    }
607 > #endif // is_mpi  
608 >    
609 >  }
610  
611 <            // Am I the node which has this integrableObject?
455 <            int whichNode = info_->getMolToProc(i);
456 <            if (whichNode == worldRank) {
457 <                if (myPotato + 1 >= MAXTAG) {
611 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
612  
613 <                    // The potato was going to exceed the maximum value,
614 <                    // so wrap this processor potato back to 0 (and block until
615 <                    // node 0 says we can go:
616 <
617 <                    MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
618 <                             &istatus);
465 <                }
466 <
467 <                mol = info_->getMoleculeByGlobalIndex(i);
468 <
469 <                
470 <                nCurObj = mol->getNIntegrableObjects();
471 <
472 <                MPI_Send(&nCurObj, 1, MPI_INT, 0, myPotato, MPI_COMM_WORLD);
473 <                myPotato++;
474 <
475 <                for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
476 <                    integrableObject = mol->nextIntegrableObject(ii)) {
477 <
478 <                    if (myPotato + 2 >= MAXTAG) {
479 <
480 <                        // The potato was going to exceed the maximum value,
481 <                        // so wrap this processor potato back to 0 (and block until
482 <                        // node 0 says we can go:
483 <
484 <                        MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
485 <                                 &istatus);
486 <                    }
487 <
488 <                    atomTypeString = integrableObject->getType().c_str();
489 <
490 <                    pos = integrableObject->getPos();
491 <                    vel = integrableObject->getVel();
492 <
493 <                    atomData[0] = pos[0];
494 <                    atomData[1] = pos[1];
495 <                    atomData[2] = pos[2];
496 <
497 <                    atomData[3] = vel[0];
498 <                    atomData[4] = vel[1];
499 <                    atomData[5] = vel[2];
500 <
501 <                    isDirectional = 0;
502 <
503 <                    if (integrableObject->isDirectional()) {
504 <                        isDirectional = 1;
505 <
506 <                        q = integrableObject->getQ();
507 <                        ji = integrableObject->getJ();
508 <
509 <                        atomData[6] = q[0];
510 <                        atomData[7] = q[1];
511 <                        atomData[8] = q[2];
512 <                        atomData[9] = q[3];
513 <
514 <                        atomData[10] = ji[0];
515 <                        atomData[11] = ji[1];
516 <                        atomData[12] = ji[2];
517 <                    }
518 <
519 <                    strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
520 <
521 <                    // null terminate the  std::string before sending (just in case):
522 <                    MPIatomTypeString[MINIBUFFERSIZE - 1] = '\0';
523 <
524 <                    MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
525 <                             myPotato, MPI_COMM_WORLD);
526 <
527 <                    myPotato++;
528 <
529 <                    if (isDirectional) {
530 <                        MPI_Send(atomData, 13, MPI_DOUBLE, 0, myPotato,
531 <                                 MPI_COMM_WORLD);
532 <                    } else {
533 <                        MPI_Send(atomData, 6, MPI_DOUBLE, 0, myPotato,
534 <                                 MPI_COMM_WORLD);
535 <                    }
536 <
537 <                    myPotato++;
538 <                }
539 <                    
540 <            }
541 <            
542 <        }
543 <        sprintf(checkPointMsg, "Sucessfully took a dump.\n");
544 <        MPIcheckPoint();
613 >    std::ostream* newOStream;
614 > #ifdef HAVE_LIBZ
615 >    if (needCompression_) {
616 >      newOStream = new ogzstream(filename.c_str());
617 >    } else {
618 >      newOStream = new std::ofstream(filename.c_str());
619      }
620 + #else
621 +    newOStream = new std::ofstream(filename.c_str());
622 + #endif
623 +    //write out MetaData first
624 +    (*newOStream) << "<OpenMD version=2>" << std::endl;
625 +    (*newOStream) << "  <MetaData>" << std::endl;
626 +    (*newOStream) << info_->getRawMetaData();
627 +    (*newOStream) << "  </MetaData>" << std::endl;
628 +    return newOStream;
629 +  }
630  
631 < #endif // is_mpi
631 >  void DumpWriter::writeClosing(std::ostream& os) {
632  
633 < }
633 >    os << "</OpenMD>\n";
634 >    os.flush();
635 >  }
636  
637 < }//end namespace oopse
637 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 251 by tim, Wed Jan 12 23:24:55 2005 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1746 by gezelter, Wed Jun 6 02:18:54 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines