ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/io/DumpWriter.cpp
(Generate patch)

Comparing:
trunk/src/io/DumpWriter.cpp (file contents), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/io/DumpWriter.cpp (file contents), Revision 1711 by gezelter, Sat May 19 02:58:35 2012 UTC

# Line 1 | Line 1
1 < #define _LARGEFILE_SOURCE64
2 < #define _FILE_OFFSET_BITS 64
1 > /*
2 > * Copyright (c) 2009 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42 >
43 > #include "io/DumpWriter.hpp"
44 > #include "primitives/Molecule.hpp"
45 > #include "utils/simError.h"
46 > #include "io/basic_teebuf.hpp"
47 > #include "io/gzstream.hpp"
48 > #include "io/Globals.hpp"
49  
4 #include <string.h>
5 #include <iostream>
6 #include <fstream>
7 #include <algorithm>
8 #include <utility>
50  
51   #ifdef IS_MPI
52   #include <mpi.h>
12 #include "brains/mpiSimulation.hpp"
13
14 namespace dWrite{
15  void DieDieDie( void );
16 }
17
18 using namespace dWrite;
53   #endif //is_mpi
54  
55 < #include "io/ReadWrite.hpp"
56 < #include "utils/simError.h"
55 > using namespace std;
56 > namespace OpenMD {
57  
58 < DumpWriter::DumpWriter( SimInfo* the_entry_plug ){
58 >  DumpWriter::DumpWriter(SimInfo* info)
59 >    : info_(info), filename_(info->getDumpFileName()), eorFilename_(info->getFinalConfigFileName()){
60  
61 <  entry_plug = the_entry_plug;
62 <
61 >    Globals* simParams = info->getSimParams();
62 >    needCompression_ = simParams->getCompressDumpFile();
63 >    needForceVector_ = simParams->getOutputForceVector();
64 >    needParticlePot_ = simParams->getOutputParticlePotential();
65 >    cerr << "DW npp = " << needParticlePot_ << "\n";
66 >    createDumpFile_ = true;
67 > #ifdef HAVE_LIBZ
68 >    if (needCompression_) {
69 >      filename_ += ".gz";
70 >      eorFilename_ += ".gz";
71 >    }
72 > #endif
73 >    
74   #ifdef IS_MPI
75 <  if(worldRank == 0 ){
75 >
76 >    if (worldRank == 0) {
77   #endif // is_mpi
78 +        
79 +      dumpFile_ = createOStream(filename_);
80  
81 <    dumpFile.open(entry_plug->sampleName.c_str(), ios::out | ios::trunc );
81 >      if (!dumpFile_) {
82 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
83 >                filename_.c_str());
84 >        painCave.isFatal = 1;
85 >        simError();
86 >      }
87  
88 <    if( !dumpFile ){
88 > #ifdef IS_MPI
89  
36      sprintf( painCave.errMsg,
37               "Could not open \"%s\" for dump output.\n",
38               entry_plug->sampleName.c_str());
39      painCave.isFatal = 1;
40      simError();
90      }
91  
92 < #ifdef IS_MPI
92 > #endif // is_mpi
93 >
94    }
95  
46  //sort the local atoms by global index
47  sortByGlobalIndex();
48  
49  sprintf( checkPointMsg,
50           "Sucessfully opened output file for dumping.\n");
51  MPIcheckPoint();
52 #endif // is_mpi
53 }
96  
97 < DumpWriter::~DumpWriter( ){
97 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename)
98 >    : info_(info), filename_(filename){
99  
100 +    Globals* simParams = info->getSimParams();
101 +    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
102 +
103 +    needCompression_ = simParams->getCompressDumpFile();
104 +    needForceVector_ = simParams->getOutputForceVector();
105 +    createDumpFile_ = true;
106 + #ifdef HAVE_LIBZ
107 +    if (needCompression_) {
108 +      filename_ += ".gz";
109 +      eorFilename_ += ".gz";
110 +    }
111 + #endif
112 +    
113   #ifdef IS_MPI
114 <  if(worldRank == 0 ){
114 >
115 >    if (worldRank == 0) {
116   #endif // is_mpi
117  
118 <    dumpFile.close();
118 >      
119 >      dumpFile_ = createOStream(filename_);
120  
121 < #ifdef IS_MPI
122 <  }
123 < #endif // is_mpi
124 < }
121 >      if (!dumpFile_) {
122 >        sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
123 >                filename_.c_str());
124 >        painCave.isFatal = 1;
125 >        simError();
126 >      }
127  
128   #ifdef IS_MPI
129  
130 < /**
71 < * A hook function to load balancing
72 < */
130 >    }
131  
132 < void DumpWriter::update(){
75 <  sortByGlobalIndex();          
76 < }
77 <  
78 < /**
79 < * Auxiliary sorting function
80 < */
81 <
82 < bool indexSortingCriterion(const pair<int, int>& p1, const pair<int, int>& p2){
83 <  return p1.second < p2.second;
84 < }
132 > #endif // is_mpi
133  
134 < /**
87 < * Sorting the local index by global index
88 < */
89 <
90 < void DumpWriter::sortByGlobalIndex(){
91 <  Molecule* mols = entry_plug->molecules;  
92 <  indexArray.clear();
134 >  }
135    
136 <  for(int i = 0; i < entry_plug->n_mol;i++)
137 <    indexArray.push_back(make_pair(i, mols[i].getGlobalIndex()));
138 <  
139 <  sort(indexArray.begin(), indexArray.end(), indexSortingCriterion);    
140 < }
141 <
136 >  DumpWriter::DumpWriter(SimInfo* info, const std::string& filename, bool writeDumpFile)
137 >    : info_(info), filename_(filename){
138 >    
139 >    Globals* simParams = info->getSimParams();
140 >    eorFilename_ = filename_.substr(0, filename_.rfind(".")) + ".eor";    
141 >    
142 >    needCompression_ = simParams->getCompressDumpFile();
143 >    needForceVector_ = simParams->getOutputForceVector();
144 >    needParticlePot_ = simParams->getOutputParticlePotential();
145 >    
146 > #ifdef HAVE_LIBZ
147 >    if (needCompression_) {
148 >      filename_ += ".gz";
149 >      eorFilename_ += ".gz";
150 >    }
151   #endif
152 +    
153 + #ifdef IS_MPI
154 +    
155 +    if (worldRank == 0) {
156 + #endif // is_mpi
157 +      
158 +      createDumpFile_ = writeDumpFile;
159 +      if (createDumpFile_) {
160 +        dumpFile_ = createOStream(filename_);
161 +      
162 +        if (!dumpFile_) {
163 +          sprintf(painCave.errMsg, "Could not open \"%s\" for dump output.\n",
164 +                  filename_.c_str());
165 +          painCave.isFatal = 1;
166 +          simError();
167 +        }
168 +      }
169 + #ifdef IS_MPI
170 +      
171 +    }
172  
173 < void DumpWriter::writeDump(double currentTime){
173 >    
174 > #endif // is_mpi
175 >    
176 >  }
177  
178 <  ofstream finalOut;
105 <  vector<ofstream*> fileStreams;
178 >  DumpWriter::~DumpWriter() {
179  
180   #ifdef IS_MPI
181 <  if(worldRank == 0 ){
182 < #endif    
110 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
111 <    if( !finalOut ){
112 <      sprintf( painCave.errMsg,
113 <               "Could not open \"%s\" for final dump output.\n",
114 <               entry_plug->finalName.c_str() );
115 <      painCave.isFatal = 1;
116 <      simError();
117 <    }
118 < #ifdef IS_MPI
119 <  }
181 >
182 >    if (worldRank == 0) {
183   #endif // is_mpi
184 +      if (createDumpFile_){
185 +        writeClosing(*dumpFile_);
186 +        delete dumpFile_;
187 +      }
188 + #ifdef IS_MPI
189  
190 <  fileStreams.push_back(&finalOut);
123 <  fileStreams.push_back(&dumpFile);
190 >    }
191  
192 <  writeFrame(fileStreams, currentTime);
192 > #endif // is_mpi
193  
194 < #ifdef IS_MPI
128 <  finalOut.close();
129 < #endif
130 <        
131 < }
194 >  }
195  
196 < void DumpWriter::writeFinal(double currentTime){
196 >  void DumpWriter::writeFrameProperties(std::ostream& os, Snapshot* s) {
197  
198 <  ofstream finalOut;
136 <  vector<ofstream*> fileStreams;
198 >    char buffer[1024];
199  
200 < #ifdef IS_MPI
139 <  if(worldRank == 0 ){
140 < #endif // is_mpi
200 >    os << "    <FrameData>\n";
201  
202 <    finalOut.open( entry_plug->finalName.c_str(), ios::out | ios::trunc );
202 >    RealType currentTime = s->getTime();
203  
204 <    if( !finalOut ){
204 >    if (isinf(currentTime) || isnan(currentTime)) {      
205        sprintf( painCave.errMsg,
206 <               "Could not open \"%s\" for final dump output.\n",
147 <               entry_plug->finalName.c_str() );
206 >               "DumpWriter detected a numerical error writing the time");      
207        painCave.isFatal = 1;
208        simError();
209      }
210 +    
211 +    sprintf(buffer, "        Time: %.10g\n", currentTime);
212 +    os << buffer;
213  
214 < #ifdef IS_MPI
215 <  }
154 < #endif // is_mpi
155 <  
156 <  fileStreams.push_back(&finalOut);  
157 <  writeFrame(fileStreams, currentTime);
214 >    Mat3x3d hmat;
215 >    hmat = s->getHmat();
216  
217 < #ifdef IS_MPI
218 <  finalOut.close();
219 < #endif
220 <  
221 < }
222 <
223 < void DumpWriter::writeFrame( vector<ofstream*>& outFile, double currentTime ){
224 <
225 <  const int BUFFERSIZE = 2000;
226 <  const int MINIBUFFERSIZE = 100;
169 <
170 <  char tempBuffer[BUFFERSIZE];  
171 <  char writeLine[BUFFERSIZE];
172 <
173 <  int i;
174 <  unsigned int k;
175 <
176 < #ifdef IS_MPI
177 <  
178 <  /*********************************************************************
179 <   * Documentation?  You want DOCUMENTATION?
180 <   *
181 <   * Why all the potatoes below?  
182 <   *
183 <   * To make a long story short, the original version of DumpWriter
184 <   * worked in the most inefficient way possible.  Node 0 would
185 <   * poke each of the node for an individual atom's formatted data
186 <   * as node 0 worked its way down the global index. This was particularly
187 <   * inefficient since the method blocked all processors at every atom
188 <   * (and did it twice!).
189 <   *
190 <   * An intermediate version of DumpWriter could be described from Node
191 <   * zero's perspective as follows:
192 <   *
193 <   *  1) Have 100 of your friends stand in a circle.
194 <   *  2) When you say go, have all of them start tossing potatoes at
195 <   *     you (one at a time).
196 <   *  3) Catch the potatoes.
197 <   *
198 <   * It was an improvement, but MPI has buffers and caches that could
199 <   * best be described in this analogy as "potato nets", so there's no
200 <   * need to block the processors atom-by-atom.
201 <   *
202 <   * This new and improved DumpWriter works in an even more efficient
203 <   * way:
204 <   *
205 <   *  1) Have 100 of your friend stand in a circle.
206 <   *  2) When you say go, have them start tossing 5-pound bags of
207 <   *     potatoes at you.
208 <   *  3) Once you've caught a friend's bag of potatoes,
209 <   *     toss them a spud to let them know they can toss another bag.
210 <   *
211 <   * How's THAT for documentation?
212 <   *
213 <   *********************************************************************/
214 <
215 <  int *potatoes;
216 <  int myPotato;
217 <
218 <  int nProc;
219 <  int j, which_node, done, which_atom, local_index, currentIndex;
220 <  double atomData[13];
221 <  int isDirectional;
222 <  char* atomTypeString;
223 <  char MPIatomTypeString[MINIBUFFERSIZE];
224 <  int nObjects;
225 <  int msgLen; // the length of message actually recieved at master nodes
226 < #endif //is_mpi
227 <
228 <  double q[4], ji[3];
229 <  DirectionalAtom* dAtom;
230 <  double pos[3], vel[3];
231 <  int nTotObjects;
232 <  StuntDouble* sd;
233 <  char* molName;
234 <  vector<StuntDouble*> integrableObjects;
235 <  vector<StuntDouble*>::iterator iter;
236 <  nTotObjects = entry_plug->getTotIntegrableObjects();
237 < #ifndef IS_MPI
238 <  
239 <  for(k = 0; k < outFile.size(); k++){
240 <    *outFile[k] << nTotObjects << "\n";
241 <
242 <    *outFile[k] << currentTime << ";\t"
243 <               << entry_plug->Hmat[0][0] << "\t"
244 <                     << entry_plug->Hmat[1][0] << "\t"
245 <                     << entry_plug->Hmat[2][0] << ";\t"
246 <              
247 <               << entry_plug->Hmat[0][1] << "\t"
248 <                     << entry_plug->Hmat[1][1] << "\t"
249 <                     << entry_plug->Hmat[2][1] << ";\t"
250 <
251 <                     << entry_plug->Hmat[0][2] << "\t"
252 <                     << entry_plug->Hmat[1][2] << "\t"
253 <                     << entry_plug->Hmat[2][2] << ";";
254 <
255 <    //write out additional parameters, such as chi and eta
256 <    *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
257 <  }
258 <  
259 <  for( i=0; i< entry_plug->n_mol; i++ ){
260 <
261 <    integrableObjects = entry_plug->molecules[i].getIntegrableObjects();
262 <    molName = (entry_plug->compStamps[entry_plug->molecules[i].getStampID()])->getID();
217 >    for (unsigned int i = 0; i < 3; i++) {
218 >      for (unsigned int j = 0; j < 3; j++) {
219 >        if (isinf(hmat(i,j)) || isnan(hmat(i,j))) {      
220 >          sprintf( painCave.errMsg,
221 >                   "DumpWriter detected a numerical error writing the box");
222 >          painCave.isFatal = 1;
223 >          simError();
224 >        }        
225 >      }
226 >    }
227      
228 <    for( iter = integrableObjects.begin();iter !=  integrableObjects.end(); ++iter){
229 <      sd = *iter;
230 <      sd->getPos(pos);
231 <      sd->getVel(vel);
228 >    sprintf(buffer, "        Hmat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
229 >            hmat(0, 0), hmat(1, 0), hmat(2, 0),
230 >            hmat(0, 1), hmat(1, 1), hmat(2, 1),
231 >            hmat(0, 2), hmat(1, 2), hmat(2, 2));
232 >    os << buffer;
233  
234 <      sprintf( tempBuffer,
235 <             "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
236 <             sd->getType(),
237 <             pos[0],
238 <             pos[1],
239 <             pos[2],
240 <             vel[0],
241 <             vel[1],
242 <             vel[2]);
243 <      strcpy( writeLine, tempBuffer );
234 >    RealType chi = s->getChi();
235 >    RealType integralOfChiDt = s->getIntegralOfChiDt();
236 >    if (isinf(chi) || isnan(chi) ||
237 >        isinf(integralOfChiDt) || isnan(integralOfChiDt)) {      
238 >      sprintf( painCave.errMsg,
239 >               "DumpWriter detected a numerical error writing the thermostat");
240 >      painCave.isFatal = 1;
241 >      simError();
242 >    }
243 >    sprintf(buffer, "  Thermostat: %.10g , %.10g\n", chi, integralOfChiDt);
244 >    os << buffer;
245  
246 <      if( sd->isDirectional() ){
246 >    Mat3x3d eta;
247 >    eta = s->getEta();
248  
249 <        sd->getQ( q );
250 <        sd->getJ( ji );
251 <
252 <        sprintf( tempBuffer,
253 <               "%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
254 <               q[0],
255 <               q[1],
256 <               q[2],
290 <               q[3],
291 <                 ji[0],
292 <                 ji[1],
293 <                 ji[2]);
294 <        strcat( writeLine, tempBuffer );
249 >    for (unsigned int i = 0; i < 3; i++) {
250 >      for (unsigned int j = 0; j < 3; j++) {
251 >        if (isinf(eta(i,j)) || isnan(eta(i,j))) {      
252 >          sprintf( painCave.errMsg,
253 >                   "DumpWriter detected a numerical error writing the barostat");
254 >          painCave.isFatal = 1;
255 >          simError();
256 >        }        
257        }
296      else
297        strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
298    
299      for(k = 0; k < outFile.size(); k++)
300        *outFile[k] << writeLine;      
258      }
259  
260 < }
260 >    sprintf(buffer, "    Barostat: {{ %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }, { %.10g, %.10g, %.10g }}\n",
261 >            eta(0, 0), eta(1, 0), eta(2, 0),
262 >            eta(0, 1), eta(1, 1), eta(2, 1),
263 >            eta(0, 2), eta(1, 2), eta(2, 2));
264 >    os << buffer;
265  
266 < #else // is_mpi
266 >    os << "    </FrameData>\n";
267 >  }
268  
269 <  /* code to find maximum tag value */
308 <  
309 <  int *tagub, flag, MAXTAG;
310 <  MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &tagub, &flag);
311 <  if (flag) {
312 <    MAXTAG = *tagub;
313 <  } else {
314 <    MAXTAG = 32767;
315 <  }  
269 >  void DumpWriter::writeFrame(std::ostream& os) {
270  
271 <  int haveError;
271 > #ifdef IS_MPI
272 >    MPI_Status istatus;
273 > #endif
274  
275 <  MPI_Status istatus;
276 <  int nCurObj;
277 <  int *MolToProcMap = mpiSim->getMolToProcMap();
275 >    Molecule* mol;
276 >    StuntDouble* integrableObject;
277 >    SimInfo::MoleculeIterator mi;
278 >    Molecule::IntegrableObjectIterator ii;
279  
280 <  // write out header and node 0's coordinates
280 > #ifndef IS_MPI
281 >    os << "  <Snapshot>\n";
282 >
283 >    writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
284  
285 <  if( worldRank == 0 ){
285 >    os << "    <StuntDoubles>\n";
286 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
287  
288 <    // Node 0 needs a list of the magic potatoes for each processor;
289 <
290 <    nProc = mpiSim->getNProcessors();
291 <    potatoes = new int[nProc];
292 <
293 <    //write out the comment lines
294 <    for (i = 0; i < nProc; i++)
295 <      potatoes[i] = 0;
288 >      
289 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;  
290 >           integrableObject = mol->nextIntegrableObject(ii)) {  
291 >          os << prepareDumpLine(integrableObject);
292 >          
293 >      }
294 >    }    
295 >    os << "    </StuntDoubles>\n";
296      
297 <      for(k = 0; k < outFile.size(); k++){
337 <        *outFile[k] << nTotObjects << "\n";
297 >    os << "  </Snapshot>\n";
298  
299 <        *outFile[k] << currentTime << ";\t"
300 <                         << entry_plug->Hmat[0][0] << "\t"
301 <                         << entry_plug->Hmat[1][0] << "\t"
302 <                         << entry_plug->Hmat[2][0] << ";\t"
299 >    os.flush();
300 > #else
301 >    //every node prepares the dump lines for integrable objects belong to itself
302 >    std::string buffer;
303 >    for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) {
304  
344                         << entry_plug->Hmat[0][1] << "\t"
345                         << entry_plug->Hmat[1][1] << "\t"
346                         << entry_plug->Hmat[2][1] << ";\t"
305  
306 <                         << entry_plug->Hmat[0][2] << "\t"
307 <                         << entry_plug->Hmat[1][2] << "\t"
308 <                         << entry_plug->Hmat[2][2] << ";";
309 <  
352 <        *outFile[k] << entry_plug->the_integrator->getAdditionalParameters() << endl;
306 >      for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
307 >           integrableObject = mol->nextIntegrableObject(ii)) {  
308 >          buffer += prepareDumpLine(integrableObject);
309 >      }
310      }
311 +    
312 +    const int masterNode = 0;
313 +    int nProc;
314 +    MPI_Comm_size(MPI_COMM_WORLD, &nProc);
315 +    if (worldRank == masterNode) {      
316 +      os << "  <Snapshot>\n";  
317 +      writeFrameProperties(os, info_->getSnapshotManager()->getCurrentSnapshot());
318 +      os << "    <StuntDoubles>\n";
319 +        
320 +      os << buffer;
321  
322 <    currentIndex = 0;
322 >      for (int i = 1; i < nProc; ++i) {
323  
324 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
324 >        // receive the length of the string buffer that was
325 >        // prepared by processor i
326 >
327 >        MPI_Bcast(&i, 1, MPI_INT,masterNode,MPI_COMM_WORLD);
328 >        int recvLength;
329 >        MPI_Recv(&recvLength, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &istatus);
330 >        char* recvBuffer = new char[recvLength];
331 >        if (recvBuffer == NULL) {
332 >        } else {
333 >          MPI_Recv(recvBuffer, recvLength, MPI_CHAR, i, 0, MPI_COMM_WORLD, &istatus);
334 >          os << recvBuffer;
335 >          delete [] recvBuffer;
336 >        }
337 >      }
338 >      os << "    </StuntDoubles>\n";
339        
340 <      // Get the Node number which has this atom;
341 <      
342 <      which_node = MolToProcMap[i];
343 <      
344 <      if (which_node != 0) {
345 <        
346 <        if (potatoes[which_node] + 1 >= MAXTAG) {
347 <          // The potato was going to exceed the maximum value,
348 <          // so wrap this processor potato back to 0:        
349 <
369 <          potatoes[which_node] = 0;          
370 <          MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
371 <          
340 >      os << "  </Snapshot>\n";
341 >      os.flush();
342 >    } else {
343 >      int sendBufferLength = buffer.size() + 1;
344 >      int myturn = 0;
345 >      for (int i = 1; i < nProc; ++i){
346 >        MPI_Bcast(&myturn,1, MPI_INT,masterNode,MPI_COMM_WORLD);
347 >        if (myturn == worldRank){
348 >          MPI_Send(&sendBufferLength, 1, MPI_INT, masterNode, 0, MPI_COMM_WORLD);
349 >          MPI_Send((void *)buffer.c_str(), sendBufferLength, MPI_CHAR, masterNode, 0, MPI_COMM_WORLD);
350          }
351 +      }
352 +    }
353  
354 <        myPotato = potatoes[which_node];        
354 > #endif // is_mpi
355  
356 <        //recieve the number of integrableObject in current molecule
377 <        MPI_Recv(&nCurObj, 1, MPI_INT, which_node,
378 <                 myPotato, MPI_COMM_WORLD, &istatus);
379 <        myPotato++;
380 <        
381 <        for(int l = 0; l < nCurObj; l++){
356 >  }
357  
358 <          if (potatoes[which_node] + 2 >= MAXTAG) {
359 <            // The potato was going to exceed the maximum value,
360 <            // so wrap this processor potato back to 0:        
358 >  std::string DumpWriter::prepareDumpLine(StuntDouble* integrableObject) {
359 >        
360 >    int index = integrableObject->getGlobalIntegrableObjectIndex();
361 >    std::string type("pv");
362 >    std::string line;
363 >    char tempBuffer[4096];
364  
365 <            potatoes[which_node] = 0;          
366 <            MPI_Send(&potatoes[which_node], 1, MPI_INT, which_node, 0, MPI_COMM_WORLD);
367 <            
390 <          }
365 >    Vector3d pos;
366 >    Vector3d vel;
367 >    pos = integrableObject->getPos();
368  
369 <          MPI_Recv(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, which_node,
370 <          myPotato, MPI_COMM_WORLD, &istatus);
369 >    if (isinf(pos[0]) || isnan(pos[0]) ||
370 >        isinf(pos[1]) || isnan(pos[1]) ||
371 >        isinf(pos[2]) || isnan(pos[2]) ) {      
372 >      sprintf( painCave.errMsg,
373 >               "DumpWriter detected a numerical error writing the position"
374 >               " for object %d", index);      
375 >      painCave.isFatal = 1;
376 >      simError();
377 >    }
378  
379 <          atomTypeString = MPIatomTypeString;
379 >    vel = integrableObject->getVel();          
380  
381 <          myPotato++;
381 >    if (isinf(vel[0]) || isnan(vel[0]) ||
382 >        isinf(vel[1]) || isnan(vel[1]) ||
383 >        isinf(vel[2]) || isnan(vel[2]) ) {      
384 >      sprintf( painCave.errMsg,
385 >               "DumpWriter detected a numerical error writing the velocity"
386 >               " for object %d", index);      
387 >      painCave.isFatal = 1;
388 >      simError();
389 >    }
390  
391 <          MPI_Recv(atomData, 13, MPI_DOUBLE, which_node, myPotato, MPI_COMM_WORLD, &istatus);
392 <          myPotato++;
391 >    sprintf(tempBuffer, "%18.10g %18.10g %18.10g %13e %13e %13e",
392 >            pos[0], pos[1], pos[2],
393 >            vel[0], vel[1], vel[2]);                    
394 >    line += tempBuffer;
395  
396 <          MPI_Get_count(&istatus, MPI_DOUBLE, &msgLen);
396 >    if (integrableObject->isDirectional()) {
397 >      type += "qj";
398 >      Quat4d q;
399 >      Vector3d ji;
400 >      q = integrableObject->getQ();
401  
402 <          if(msgLen  == 13)
403 <            isDirectional = 1;
404 <          else
405 <            isDirectional = 0;
406 <          
407 <          // If we've survived to here, format the line:
408 <            
409 <          if (!isDirectional) {
410 <        
413 <            sprintf( writeLine,
414 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
415 <                 atomTypeString,
416 <                 atomData[0],
417 <                 atomData[1],
418 <                 atomData[2],
419 <                 atomData[3],
420 <                 atomData[4],
421 <                 atomData[5]);
422 <        
423 <           strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
424 <        
425 <          }
426 <          else {
427 <        
428 <                sprintf( writeLine,
429 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
430 <                         atomTypeString,
431 <                         atomData[0],
432 <                         atomData[1],
433 <                         atomData[2],
434 <                         atomData[3],
435 <                         atomData[4],
436 <                         atomData[5],
437 <                         atomData[6],
438 <                         atomData[7],
439 <                         atomData[8],
440 <                         atomData[9],
441 <                         atomData[10],
442 <                         atomData[11],
443 <                         atomData[12]);
444 <            
445 <          }
446 <          
447 <          for(k = 0; k < outFile.size(); k++)
448 <            *outFile[k] << writeLine;            
449 <
450 <        }// end for(int l =0)
451 <        potatoes[which_node] = myPotato;
452 <
402 >      if (isinf(q[0]) || isnan(q[0]) ||
403 >          isinf(q[1]) || isnan(q[1]) ||
404 >          isinf(q[2]) || isnan(q[2]) ||
405 >          isinf(q[3]) || isnan(q[3]) ) {      
406 >        sprintf( painCave.errMsg,
407 >                 "DumpWriter detected a numerical error writing the quaternion"
408 >                 " for object %d", index);      
409 >        painCave.isFatal = 1;
410 >        simError();
411        }
454      else {
455        
456        haveError = 0;
457        
458            local_index = indexArray[currentIndex].first;        
412  
413 <        integrableObjects = (entry_plug->molecules[local_index]).getIntegrableObjects();
413 >      ji = integrableObject->getJ();
414  
415 <        for(iter= integrableObjects.begin(); iter != integrableObjects.end(); ++iter){    
416 <                sd = *iter;
417 <            atomTypeString = sd->getType();
418 <            
419 <            sd->getPos(pos);
420 <            sd->getVel(vel);          
421 <          
422 <            atomData[0] = pos[0];
470 <            atomData[1] = pos[1];
471 <            atomData[2] = pos[2];
472 <
473 <            atomData[3] = vel[0];
474 <            atomData[4] = vel[1];
475 <            atomData[5] = vel[2];
476 <              
477 <            isDirectional = 0;
478 <
479 <            if( sd->isDirectional() ){
480 <
481 <              isDirectional = 1;
482 <                
483 <              sd->getQ( q );
484 <              sd->getJ( ji );
485 <
486 <              for (int j = 0; j < 6 ; j++)
487 <                atomData[j] = atomData[j];            
488 <              
489 <              atomData[6] = q[0];
490 <              atomData[7] = q[1];
491 <              atomData[8] = q[2];
492 <              atomData[9] = q[3];
493 <              
494 <              atomData[10] = ji[0];
495 <              atomData[11] = ji[1];
496 <              atomData[12] = ji[2];
497 <            }
498 <            
499 <            // If we've survived to here, format the line:
500 <            
501 <            if (!isDirectional) {
502 <        
503 <              sprintf( writeLine,
504 <                 "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t",
505 <                 atomTypeString,
506 <                 atomData[0],
507 <                 atomData[1],
508 <                 atomData[2],
509 <                 atomData[3],
510 <                 atomData[4],
511 <                 atomData[5]);
512 <        
513 <             strcat( writeLine, "0.0\t0.0\t0.0\t0.0\t0.0\t0.0\t0.0\n" );
514 <        
515 <            }
516 <            else {
517 <        
518 <                sprintf( writeLine,
519 <                         "%s\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\n",
520 <                         atomTypeString,
521 <                         atomData[0],
522 <                         atomData[1],
523 <                         atomData[2],
524 <                         atomData[3],
525 <                         atomData[4],
526 <                         atomData[5],
527 <                         atomData[6],
528 <                         atomData[7],
529 <                         atomData[8],
530 <                         atomData[9],
531 <                         atomData[10],
532 <                         atomData[11],
533 <                         atomData[12]);
534 <              
535 <            }
536 <            
537 <            for(k = 0; k < outFile.size(); k++)
538 <              *outFile[k] << writeLine;
539 <            
540 <            
541 <        }//end for(iter = integrableObject.begin())
542 <        
543 <      currentIndex++;
415 >      if (isinf(ji[0]) || isnan(ji[0]) ||
416 >          isinf(ji[1]) || isnan(ji[1]) ||
417 >          isinf(ji[2]) || isnan(ji[2]) ) {      
418 >        sprintf( painCave.errMsg,
419 >                 "DumpWriter detected a numerical error writing the angular"
420 >                 " momentum for object %d", index);      
421 >        painCave.isFatal = 1;
422 >        simError();
423        }
424  
425 <    }//end for(i = 0; i < mpiSim->getNmol())
426 <    
427 <    for(k = 0; k < outFile.size(); k++)
428 <      outFile[k]->flush();
429 <    
551 <    sprintf( checkPointMsg,
552 <             "Sucessfully took a dump.\n");
553 <    
554 <    MPIcheckPoint();        
555 <    
556 <    delete[] potatoes;
557 <    
558 <  } else {
425 >      sprintf(tempBuffer, " %13e %13e %13e %13e %13e %13e %13e",
426 >              q[0], q[1], q[2], q[3],
427 >              ji[0], ji[1], ji[2]);
428 >      line += tempBuffer;
429 >    }
430  
431 <    // worldRank != 0, so I'm a remote node.  
432 <
433 <    // Set my magic potato to 0:
563 <
564 <    myPotato = 0;
565 <    currentIndex = 0;
566 <    
567 <    for (i = 0 ; i < mpiSim->getNMolGlobal(); i++ ) {
568 <      
569 <      // Am I the node which has this integrableObject?
570 <      
571 <      if (MolToProcMap[i] == worldRank) {
431 >    if (needForceVector_) {
432 >      type += "f";
433 >      Vector3d frc;
434  
435 +      frc = integrableObject->getFrc();
436  
437 <        if (myPotato + 1 >= MAXTAG) {
438 <          
439 <          // The potato was going to exceed the maximum value,
440 <          // so wrap this processor potato back to 0 (and block until
441 <          // node 0 says we can go:
442 <          
443 <          MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
444 <          
437 >      if (isinf(frc[0]) || isnan(frc[0]) ||
438 >          isinf(frc[1]) || isnan(frc[1]) ||
439 >          isinf(frc[2]) || isnan(frc[2]) ) {      
440 >        sprintf( painCave.errMsg,
441 >                 "DumpWriter detected a numerical error writing the force"
442 >                 " for object %d", index);      
443 >        painCave.isFatal = 1;
444 >        simError();
445 >      }
446 >      sprintf(tempBuffer, " %13e %13e %13e",
447 >              frc[0], frc[1], frc[2]);
448 >      line += tempBuffer;
449 >      
450 >      if (integrableObject->isDirectional()) {
451 >        type += "t";
452 >        Vector3d trq;
453 >        
454 >        trq = integrableObject->getTrq();
455 >        
456 >        if (isinf(trq[0]) || isnan(trq[0]) ||
457 >            isinf(trq[1]) || isnan(trq[1]) ||
458 >            isinf(trq[2]) || isnan(trq[2]) ) {      
459 >          sprintf( painCave.errMsg,
460 >                   "DumpWriter detected a numerical error writing the torque"
461 >                   " for object %d", index);      
462 >          painCave.isFatal = 1;
463 >          simError();
464          }
465 +        
466 +        sprintf(tempBuffer, " %13e %13e %13e",
467 +                trq[0], trq[1], trq[2]);
468 +        line += tempBuffer;
469 +      }      
470 +    }
471 +    if (needParticlePot_) {
472 +      type += "u";
473 +      RealType particlePot;
474  
475 <          local_index = indexArray[currentIndex].first;        
585 <          integrableObjects = entry_plug->molecules[local_index].getIntegrableObjects();
586 <          
587 <          nCurObj = integrableObjects.size();
588 <                      
589 <          MPI_Send(&nCurObj, 1, MPI_INT, 0,
590 <                             myPotato, MPI_COMM_WORLD);
591 <          myPotato++;
475 >      particlePot = integrableObject->getParticlePot();
476  
477 <          for( iter = integrableObjects.begin(); iter  != integrableObjects.end(); iter++){
477 >      if (isinf(particlePot) || isnan(particlePot)) {      
478 >        sprintf( painCave.errMsg,
479 >                 "DumpWriter detected a numerical error writing the particle "
480 >                 " potential for object %d", index);      
481 >        painCave.isFatal = 1;
482 >        simError();
483 >      }
484 >      sprintf(tempBuffer, " %13e", particlePot);
485 >      line += tempBuffer;
486 >    }
487 >    
488 >    sprintf(tempBuffer, "%10d %7s %s\n", index, type.c_str(), line.c_str());
489 >    return std::string(tempBuffer);
490 >  }
491  
492 <            if (myPotato + 2 >= MAXTAG) {
493 <          
494 <              // The potato was going to exceed the maximum value,
598 <              // so wrap this processor potato back to 0 (and block until
599 <              // node 0 says we can go:
600 <          
601 <              MPI_Recv(&myPotato, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &istatus);
602 <              
603 <            }
604 <            
605 <            sd = *iter;
606 <            
607 <            atomTypeString = sd->getType();
492 >  void DumpWriter::writeDump() {
493 >    writeFrame(*dumpFile_);
494 >  }
495  
496 <            sd->getPos(pos);
497 <            sd->getVel(vel);
496 >  void DumpWriter::writeEor() {
497 >    std::ostream* eorStream;
498 >    
499 > #ifdef IS_MPI
500 >    if (worldRank == 0) {
501 > #endif // is_mpi
502  
503 <            atomData[0] = pos[0];
613 <            atomData[1] = pos[1];
614 <            atomData[2] = pos[2];
503 >      eorStream = createOStream(eorFilename_);
504  
505 <            atomData[3] = vel[0];
506 <            atomData[4] = vel[1];
507 <            atomData[5] = vel[2];
619 <              
620 <            isDirectional = 0;
505 > #ifdef IS_MPI
506 >    }
507 > #endif // is_mpi    
508  
509 <            if( sd->isDirectional() ){
509 >    writeFrame(*eorStream);
510  
511 <                isDirectional = 1;
512 <                
513 <                sd->getQ( q );
514 <                sd->getJ( ji );
515 <                
516 <                
517 <                atomData[6] = q[0];
518 <                atomData[7] = q[1];
632 <                atomData[8] = q[2];
633 <                atomData[9] = q[3];
634 <      
635 <                atomData[10] = ji[0];
636 <                atomData[11] = ji[1];
637 <                atomData[12] = ji[2];
638 <              }
511 > #ifdef IS_MPI
512 >    if (worldRank == 0) {
513 > #endif // is_mpi
514 >      writeClosing(*eorStream);
515 >      delete eorStream;
516 > #ifdef IS_MPI
517 >    }
518 > #endif // is_mpi  
519  
520 <            
641 <            strncpy(MPIatomTypeString, atomTypeString, MINIBUFFERSIZE);
520 >  }
521  
643            // null terminate the string before sending (just in case):
644            MPIatomTypeString[MINIBUFFERSIZE-1] = '\0';
522  
523 <            MPI_Send(MPIatomTypeString, MINIBUFFERSIZE, MPI_CHAR, 0,
524 <                             myPotato, MPI_COMM_WORLD);
525 <            
526 <            myPotato++;
527 <            
528 <            if (isDirectional) {
523 >  void DumpWriter::writeDumpAndEor() {
524 >    std::vector<std::streambuf*> buffers;
525 >    std::ostream* eorStream;
526 > #ifdef IS_MPI
527 >    if (worldRank == 0) {
528 > #endif // is_mpi
529  
530 <              MPI_Send(atomData, 13, MPI_DOUBLE, 0,
654 <                       myPotato, MPI_COMM_WORLD);
655 <              
656 <            } else {
530 >      buffers.push_back(dumpFile_->rdbuf());
531  
532 <              MPI_Send(atomData, 6, MPI_DOUBLE, 0,
659 <                       myPotato, MPI_COMM_WORLD);
660 <            }
532 >      eorStream = createOStream(eorFilename_);
533  
534 <            myPotato++;  
535 <
536 <          }
665 <
666 <          currentIndex++;    
667 <          
668 <        }
669 <      
670 <      }
671 <
672 <    sprintf( checkPointMsg,
673 <             "Sucessfully took a dump.\n");
674 <    MPIcheckPoint();                
675 <    
534 >      buffers.push_back(eorStream->rdbuf());
535 >        
536 > #ifdef IS_MPI
537      }
538 + #endif // is_mpi    
539  
540 +    TeeBuf tbuf(buffers.begin(), buffers.end());
541 +    std::ostream os(&tbuf);
542  
543 <  
680 < #endif // is_mpi
681 < }
543 >    writeFrame(os);
544  
545   #ifdef IS_MPI
546 +    if (worldRank == 0) {
547 + #endif // is_mpi
548 +      writeClosing(*eorStream);
549 +      delete eorStream;
550 + #ifdef IS_MPI
551 +    }
552 + #endif // is_mpi  
553 +    
554 +  }
555  
556 < // a couple of functions to let us escape the write loop
556 >  std::ostream* DumpWriter::createOStream(const std::string& filename) {
557  
558 < void dWrite::DieDieDie( void ){
558 >    std::ostream* newOStream;
559 > #ifdef HAVE_LIBZ
560 >    if (needCompression_) {
561 >      newOStream = new ogzstream(filename.c_str());
562 >    } else {
563 >      newOStream = new std::ofstream(filename.c_str());
564 >    }
565 > #else
566 >    newOStream = new std::ofstream(filename.c_str());
567 > #endif
568 >    //write out MetaData first
569 >    (*newOStream) << "<OpenMD version=1>" << std::endl;
570 >    (*newOStream) << "  <MetaData>" << std::endl;
571 >    (*newOStream) << info_->getRawMetaData();
572 >    (*newOStream) << "  </MetaData>" << std::endl;
573 >    return newOStream;
574 >  }
575  
576 <  MPI_Finalize();
690 <  exit (0);
691 < }
576 >  void DumpWriter::writeClosing(std::ostream& os) {
577  
578 < #endif //is_mpi
578 >    os << "</OpenMD>\n";
579 >    os.flush();
580 >  }
581 >
582 > }//end namespace OpenMD

Comparing:
trunk/src/io/DumpWriter.cpp (property svn:keywords), Revision 3 by tim, Fri Sep 24 16:27:58 2004 UTC vs.
branches/development/src/io/DumpWriter.cpp (property svn:keywords), Revision 1711 by gezelter, Sat May 19 02:58:35 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines