1 |
gezelter |
1079 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
1079 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
1079 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
1079 |
*/ |
41 |
|
|
|
42 |
|
|
#include "integrators/Velocitizer.hpp" |
43 |
|
|
#include "math/SquareMatrix3.hpp" |
44 |
|
|
#include "primitives/Molecule.hpp" |
45 |
|
|
#include "primitives/StuntDouble.hpp" |
46 |
|
|
|
47 |
|
|
#ifndef IS_MPI |
48 |
|
|
#include "math/SeqRandNumGen.hpp" |
49 |
|
|
#else |
50 |
|
|
#include "math/ParallelRandNumGen.hpp" |
51 |
|
|
#endif |
52 |
|
|
|
53 |
|
|
/* Remove me after testing*/ |
54 |
gezelter |
1313 |
/* |
55 |
gezelter |
1079 |
#include <cstdio> |
56 |
|
|
#include <iostream> |
57 |
gezelter |
1313 |
*/ |
58 |
gezelter |
1079 |
/*End remove me*/ |
59 |
|
|
|
60 |
gezelter |
1390 |
namespace OpenMD { |
61 |
gezelter |
1079 |
|
62 |
|
|
Velocitizer::Velocitizer(SimInfo* info) : info_(info) { |
63 |
|
|
|
64 |
|
|
int seedValue; |
65 |
|
|
Globals * simParams = info->getSimParams(); |
66 |
|
|
|
67 |
|
|
#ifndef IS_MPI |
68 |
|
|
if (simParams->haveSeed()) { |
69 |
|
|
seedValue = simParams->getSeed(); |
70 |
|
|
randNumGen_ = new SeqRandNumGen(seedValue); |
71 |
|
|
}else { |
72 |
|
|
randNumGen_ = new SeqRandNumGen(); |
73 |
|
|
} |
74 |
|
|
#else |
75 |
|
|
if (simParams->haveSeed()) { |
76 |
|
|
seedValue = simParams->getSeed(); |
77 |
|
|
randNumGen_ = new ParallelRandNumGen(seedValue); |
78 |
|
|
}else { |
79 |
|
|
randNumGen_ = new ParallelRandNumGen(); |
80 |
|
|
} |
81 |
|
|
#endif |
82 |
|
|
} |
83 |
|
|
|
84 |
|
|
Velocitizer::~Velocitizer() { |
85 |
|
|
delete randNumGen_; |
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
void Velocitizer::velocitize(RealType temperature) { |
89 |
|
|
Vector3d aVel; |
90 |
|
|
Vector3d aJ; |
91 |
|
|
Mat3x3d I; |
92 |
|
|
int l; |
93 |
|
|
int m; |
94 |
|
|
int n; |
95 |
|
|
Vector3d vdrift; |
96 |
|
|
RealType vbar; |
97 |
|
|
/**@todo refactory kb */ |
98 |
|
|
const RealType kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
99 |
|
|
RealType av2; |
100 |
|
|
RealType kebar; |
101 |
|
|
|
102 |
|
|
Globals * simParams = info_->getSimParams(); |
103 |
|
|
|
104 |
|
|
SimInfo::MoleculeIterator i; |
105 |
|
|
Molecule::IntegrableObjectIterator j; |
106 |
|
|
Molecule * mol; |
107 |
|
|
StuntDouble * integrableObject; |
108 |
gezelter |
1313 |
|
109 |
gezelter |
1079 |
kebar = kb * temperature * info_->getNdfRaw() / (2.0 * info_->getNdf()); |
110 |
|
|
for( mol = info_->beginMolecule(i); mol != NULL; |
111 |
|
|
mol = info_->nextMolecule(i) ) { |
112 |
|
|
for( integrableObject = mol->beginIntegrableObject(j); |
113 |
|
|
integrableObject != NULL; |
114 |
|
|
integrableObject = mol->nextIntegrableObject(j) ) { |
115 |
|
|
|
116 |
|
|
// uses equipartition theory to solve for vbar in angstrom/fs |
117 |
|
|
|
118 |
|
|
av2 = 2.0 * kebar / integrableObject->getMass(); |
119 |
|
|
vbar = sqrt(av2); |
120 |
|
|
|
121 |
|
|
// picks random velocities from a gaussian distribution |
122 |
|
|
// centered on vbar |
123 |
|
|
|
124 |
|
|
for( int k = 0; k < 3; k++ ) { |
125 |
|
|
aVel[k] = vbar * randNumGen_->randNorm(0.0, 1.0); |
126 |
|
|
} |
127 |
|
|
integrableObject->setVel(aVel); |
128 |
|
|
|
129 |
|
|
if (integrableObject->isDirectional()) { |
130 |
|
|
I = integrableObject->getI(); |
131 |
|
|
|
132 |
|
|
if (integrableObject->isLinear()) { |
133 |
|
|
l = integrableObject->linearAxis(); |
134 |
|
|
m = (l + 1) % 3; |
135 |
|
|
n = (l + 2) % 3; |
136 |
|
|
|
137 |
|
|
aJ[l] = 0.0; |
138 |
|
|
vbar = sqrt(2.0 * kebar * I(m, m)); |
139 |
|
|
aJ[m] = vbar * randNumGen_->randNorm(0.0, 1.0); |
140 |
|
|
vbar = sqrt(2.0 * kebar * I(n, n)); |
141 |
|
|
aJ[n] = vbar * randNumGen_->randNorm(0.0, 1.0); |
142 |
|
|
} else { |
143 |
|
|
for( int k = 0; k < 3; k++ ) { |
144 |
|
|
vbar = sqrt(2.0 * kebar * I(k, k)); |
145 |
|
|
aJ[k] = vbar *randNumGen_->randNorm(0.0, 1.0); |
146 |
|
|
} |
147 |
|
|
} // else isLinear |
148 |
|
|
|
149 |
|
|
integrableObject->setJ(aJ); |
150 |
|
|
} //isDirectional |
151 |
|
|
} |
152 |
|
|
} //end for (mol = beginMolecule(i); ...) |
153 |
|
|
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
removeComDrift(); |
157 |
|
|
// Remove angular drift if we are not using periodic boundary conditions. |
158 |
|
|
if(!simParams->getUsePeriodicBoundaryConditions()) removeAngularDrift(); |
159 |
|
|
|
160 |
|
|
} |
161 |
|
|
|
162 |
|
|
|
163 |
|
|
|
164 |
|
|
void Velocitizer::removeComDrift() { |
165 |
|
|
// Get the Center of Mass drift velocity. |
166 |
|
|
Vector3d vdrift = info_->getComVel(); |
167 |
|
|
|
168 |
|
|
SimInfo::MoleculeIterator i; |
169 |
|
|
Molecule::IntegrableObjectIterator j; |
170 |
|
|
Molecule * mol; |
171 |
|
|
StuntDouble * integrableObject; |
172 |
|
|
|
173 |
|
|
// Corrects for the center of mass drift. |
174 |
|
|
// sums all the momentum and divides by total mass. |
175 |
|
|
for( mol = info_->beginMolecule(i); mol != NULL; |
176 |
|
|
mol = info_->nextMolecule(i) ) { |
177 |
|
|
for( integrableObject = mol->beginIntegrableObject(j); |
178 |
|
|
integrableObject != NULL; |
179 |
|
|
integrableObject = mol->nextIntegrableObject(j) ) { |
180 |
|
|
integrableObject->setVel(integrableObject->getVel() - vdrift); |
181 |
|
|
} |
182 |
|
|
} |
183 |
|
|
|
184 |
|
|
} |
185 |
|
|
|
186 |
|
|
|
187 |
|
|
void Velocitizer::removeAngularDrift() { |
188 |
|
|
// Get the Center of Mass drift velocity. |
189 |
|
|
|
190 |
|
|
Vector3d vdrift; |
191 |
|
|
Vector3d com; |
192 |
|
|
|
193 |
|
|
info_->getComAll(com,vdrift); |
194 |
|
|
|
195 |
|
|
Mat3x3d inertiaTensor; |
196 |
|
|
Vector3d angularMomentum; |
197 |
|
|
Vector3d omega; |
198 |
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
info_->getInertiaTensor(inertiaTensor,angularMomentum); |
202 |
|
|
// We now need the inverse of the inertia tensor. |
203 |
|
|
/* |
204 |
|
|
std::cerr << "Angular Momentum before is " |
205 |
|
|
<< angularMomentum << std::endl; |
206 |
|
|
std::cerr << "Inertia Tensor before is " |
207 |
|
|
<< inertiaTensor << std::endl; |
208 |
gezelter |
1313 |
*/ |
209 |
gezelter |
1079 |
inertiaTensor =inertiaTensor.inverse(); |
210 |
|
|
/* |
211 |
|
|
std::cerr << "Inertia Tensor after inverse is " |
212 |
|
|
<< inertiaTensor << std::endl; |
213 |
|
|
*/ |
214 |
|
|
omega = inertiaTensor*angularMomentum; |
215 |
|
|
|
216 |
|
|
SimInfo::MoleculeIterator i; |
217 |
|
|
Molecule::IntegrableObjectIterator j; |
218 |
|
|
Molecule * mol; |
219 |
|
|
StuntDouble * integrableObject; |
220 |
|
|
Vector3d tempComPos; |
221 |
|
|
|
222 |
|
|
// Corrects for the center of mass angular drift. |
223 |
|
|
// sums all the angular momentum and divides by total mass. |
224 |
|
|
for( mol = info_->beginMolecule(i); mol != NULL; |
225 |
|
|
mol = info_->nextMolecule(i) ) { |
226 |
|
|
for( integrableObject = mol->beginIntegrableObject(j); |
227 |
|
|
integrableObject != NULL; |
228 |
|
|
integrableObject = mol->nextIntegrableObject(j) ) { |
229 |
|
|
tempComPos = integrableObject->getPos()-com; |
230 |
|
|
integrableObject->setVel((integrableObject->getVel() - vdrift)-cross(omega,tempComPos)); |
231 |
|
|
} |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
angularMomentum = info_->getAngularMomentum(); |
235 |
|
|
/* |
236 |
|
|
std::cerr << "Angular Momentum after is " |
237 |
|
|
<< angularMomentum << std::endl; |
238 |
gezelter |
1313 |
*/ |
239 |
gezelter |
1079 |
} |
240 |
|
|
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
|
244 |
|
|
} |