1 |
/* |
2 |
* Copyright (c) 2008, 2009, 2010 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include <fstream> |
42 |
#include <iostream> |
43 |
#include "integrators/SMIPDForceManager.hpp" |
44 |
#include "utils/PhysicalConstants.hpp" |
45 |
#include "math/ConvexHull.hpp" |
46 |
#include "math/AlphaHull.hpp" |
47 |
#include "math/Triangle.hpp" |
48 |
#include "math/CholeskyDecomposition.hpp" |
49 |
#ifdef IS_MPI |
50 |
#include <mpi.h> |
51 |
#endif |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info) { |
56 |
|
57 |
simParams = info->getSimParams(); |
58 |
veloMunge = new Velocitizer(info); |
59 |
|
60 |
// Create Hull, Convex Hull for now, other options later. |
61 |
|
62 |
stringToEnumMap_["Convex"] = hullConvex; |
63 |
stringToEnumMap_["AlphaShape"] = hullAlphaShape; |
64 |
stringToEnumMap_["Unknown"] = hullUnknown; |
65 |
|
66 |
const std::string ht = simParams->getHULL_Method(); |
67 |
|
68 |
|
69 |
|
70 |
std::map<std::string, HullTypeEnum>::iterator iter; |
71 |
iter = stringToEnumMap_.find(ht); |
72 |
hullType_ = (iter == stringToEnumMap_.end()) ? SMIPDForceManager::hullUnknown : iter->second; |
73 |
if (hullType_ == hullUnknown) { |
74 |
std::cerr << "WARNING! Hull Type Unknown!\n"; |
75 |
} |
76 |
|
77 |
switch(hullType_) { |
78 |
case hullConvex : |
79 |
surfaceMesh_ = new ConvexHull(); |
80 |
break; |
81 |
case hullAlphaShape : |
82 |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
83 |
break; |
84 |
case hullUnknown : |
85 |
default : |
86 |
break; |
87 |
} |
88 |
/* Check that the simulation has target pressure and target |
89 |
temperature set */ |
90 |
|
91 |
if (!simParams->haveTargetTemp()) { |
92 |
sprintf(painCave.errMsg, |
93 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
94 |
"\twithout a targetTemp (K)!\n"); |
95 |
painCave.isFatal = 1; |
96 |
painCave.severity = OPENMD_ERROR; |
97 |
simError(); |
98 |
} else { |
99 |
targetTemp_ = simParams->getTargetTemp(); |
100 |
} |
101 |
|
102 |
if (!simParams->haveTargetPressure()) { |
103 |
sprintf(painCave.errMsg, |
104 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
105 |
"\twithout a targetPressure (atm)!\n"); |
106 |
painCave.isFatal = 1; |
107 |
simError(); |
108 |
} else { |
109 |
// Convert pressure from atm -> amu/(fs^2*Ang) |
110 |
targetPressure_ = simParams->getTargetPressure() / |
111 |
PhysicalConstants::pressureConvert; |
112 |
} |
113 |
|
114 |
if (simParams->getUsePeriodicBoundaryConditions()) { |
115 |
sprintf(painCave.errMsg, |
116 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
117 |
"\twith periodic boundary conditions!\n"); |
118 |
painCave.isFatal = 1; |
119 |
simError(); |
120 |
} |
121 |
|
122 |
if (!simParams->haveViscosity()) { |
123 |
sprintf(painCave.errMsg, |
124 |
"SMIPDynamics error: You can't use the SMIPD integrator\n" |
125 |
"\twithout a viscosity!\n"); |
126 |
painCave.isFatal = 1; |
127 |
painCave.severity = OPENMD_ERROR; |
128 |
simError(); |
129 |
}else{ |
130 |
viscosity_ = simParams->getViscosity(); |
131 |
} |
132 |
|
133 |
dt_ = simParams->getDt(); |
134 |
|
135 |
variance_ = 2.0 * PhysicalConstants::kb * targetTemp_ / dt_; |
136 |
|
137 |
// Build a vector of integrable objects to determine if the are |
138 |
// surface atoms |
139 |
Molecule* mol; |
140 |
StuntDouble* integrableObject; |
141 |
SimInfo::MoleculeIterator i; |
142 |
Molecule::IntegrableObjectIterator j; |
143 |
|
144 |
for (mol = info_->beginMolecule(i); mol != NULL; |
145 |
mol = info_->nextMolecule(i)) { |
146 |
for (integrableObject = mol->beginIntegrableObject(j); |
147 |
integrableObject != NULL; |
148 |
integrableObject = mol->nextIntegrableObject(j)) { |
149 |
localSites_.push_back(integrableObject); |
150 |
} |
151 |
} |
152 |
} |
153 |
|
154 |
void SMIPDForceManager::postCalculation(){ |
155 |
SimInfo::MoleculeIterator i; |
156 |
Molecule::IntegrableObjectIterator j; |
157 |
Molecule* mol; |
158 |
StuntDouble* integrableObject; |
159 |
|
160 |
// Compute surface Mesh |
161 |
surfaceMesh_->computeHull(localSites_); |
162 |
|
163 |
// Get total area and number of surface stunt doubles |
164 |
RealType area = surfaceMesh_->getArea(); |
165 |
std::vector<Triangle> sMesh = surfaceMesh_->getMesh(); |
166 |
int nTriangles = sMesh.size(); |
167 |
|
168 |
// Generate all of the necessary random forces |
169 |
std::vector<Vector3d> randNums = genTriangleForces(nTriangles, variance_); |
170 |
|
171 |
// Loop over the mesh faces and apply external pressure to each |
172 |
// of the faces |
173 |
std::vector<Triangle>::iterator face; |
174 |
std::vector<StuntDouble*>::iterator vertex; |
175 |
int thisFacet = 0; |
176 |
for (face = sMesh.begin(); face != sMesh.end(); ++face){ |
177 |
Triangle thisTriangle = *face; |
178 |
std::vector<StuntDouble*> vertexSDs = thisTriangle.getVertices(); |
179 |
RealType thisArea = thisTriangle.getArea(); |
180 |
Vector3d unitNormal = thisTriangle.getUnitNormal(); |
181 |
//unitNormal.normalize(); |
182 |
Vector3d centroid = thisTriangle.getCentroid(); |
183 |
Vector3d facetVel = thisTriangle.getFacetVelocity(); |
184 |
RealType thisMass = thisTriangle.getFacetMass(); |
185 |
Mat3x3d hydroTensor = thisTriangle.computeHydrodynamicTensor(viscosity_); |
186 |
|
187 |
hydroTensor *= PhysicalConstants::viscoConvert; |
188 |
Mat3x3d S; |
189 |
CholeskyDecomposition(hydroTensor, S); |
190 |
|
191 |
Vector3d extPressure = -unitNormal * (targetPressure_ * thisArea) / |
192 |
PhysicalConstants::energyConvert; |
193 |
|
194 |
Vector3d randomForce = S * randNums[thisFacet++]; |
195 |
Vector3d dragForce = -hydroTensor * facetVel; |
196 |
|
197 |
Vector3d langevinForce = (extPressure + randomForce + dragForce); |
198 |
|
199 |
// Apply triangle force to stuntdouble vertices |
200 |
for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){ |
201 |
if ((*vertex) != NULL){ |
202 |
Vector3d vertexForce = langevinForce / 3.0; |
203 |
(*vertex)->addFrc(vertexForce); |
204 |
} |
205 |
} |
206 |
} |
207 |
|
208 |
veloMunge->removeComDrift(); |
209 |
veloMunge->removeAngularDrift(); |
210 |
|
211 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
212 |
currSnapshot->setVolume(surfaceMesh_->getVolume()); |
213 |
ForceManager::postCalculation(); |
214 |
} |
215 |
|
216 |
|
217 |
std::vector<Vector3d> SMIPDForceManager::genTriangleForces(int nTriangles, |
218 |
RealType variance) |
219 |
{ |
220 |
|
221 |
// zero fill the random vector before starting: |
222 |
std::vector<Vector3d> gaussRand; |
223 |
gaussRand.resize(nTriangles); |
224 |
std::fill(gaussRand.begin(), gaussRand.end(), V3Zero); |
225 |
|
226 |
#ifdef IS_MPI |
227 |
if (worldRank == 0) { |
228 |
#endif |
229 |
for (int i = 0; i < nTriangles; i++) { |
230 |
gaussRand[i][0] = randNumGen_.randNorm(0.0, variance); |
231 |
gaussRand[i][1] = randNumGen_.randNorm(0.0, variance); |
232 |
gaussRand[i][2] = randNumGen_.randNorm(0.0, variance); |
233 |
} |
234 |
#ifdef IS_MPI |
235 |
} |
236 |
#endif |
237 |
|
238 |
// push these out to the other processors |
239 |
|
240 |
#ifdef IS_MPI |
241 |
if (worldRank == 0) { |
242 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles*3, MPI::REALTYPE, 0); |
243 |
} else { |
244 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles*3, MPI::REALTYPE, 0); |
245 |
} |
246 |
#endif |
247 |
|
248 |
return gaussRand; |
249 |
} |
250 |
} |