ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/SMIPDForceManager.cpp
Revision: 1325
Committed: Fri Dec 5 16:20:39 2008 UTC (16 years, 4 months ago) by chuckv
Original Path: trunk/src/integrators/SMIPDForceManager.cpp
File size: 19653 byte(s)
Log Message:
Different method again for Langevin Dynamics.

File Contents

# User Rev Content
1 chuckv 1293 /*
2     * Copyright (c) 2008 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41     #include <fstream>
42     #include <iostream>
43     #include "integrators/SMIPDForceManager.hpp"
44 chuckv 1325 #include "math/CholeskyDecomposition.hpp"
45 chuckv 1293 #include "utils/OOPSEConstant.hpp"
46 chuckv 1325 #include "hydrodynamics/Sphere.hpp"
47     #include "hydrodynamics/Ellipsoid.hpp"
48     #include "utils/ElementsTable.hpp"
49 chuckv 1293 #include "math/ConvexHull.hpp"
50     #include "math/Triangle.hpp"
51    
52     namespace oopse {
53 gezelter 1324
54 chuckv 1325 SMIPDForceManager::SMIPDForceManager(SimInfo* info) : ForceManager(info),
55     forceTolerance_(1e-6),
56     maxIterNum_(4) {
57 chuckv 1293 simParams = info->getSimParams();
58 chuckv 1325 veloMunge = new Velocitizer(info);
59 chuckv 1293
60     // Create Hull, Convex Hull for now, other options later.
61 gezelter 1324
62 chuckv 1293 surfaceMesh_ = new ConvexHull();
63    
64     /* Check that the simulation has target pressure and target
65 chuckv 1325 temperature set */
66 chuckv 1323
67 chuckv 1293 if (!simParams->haveTargetTemp()) {
68 gezelter 1324 sprintf(painCave.errMsg,
69     "SMIPDynamics error: You can't use the SMIPD integrator\n"
70     " without a targetTemp!\n");
71 chuckv 1293 painCave.isFatal = 1;
72     painCave.severity = OOPSE_ERROR;
73     simError();
74     } else {
75     targetTemp_ = simParams->getTargetTemp();
76     }
77 chuckv 1323
78 chuckv 1293 if (!simParams->haveTargetPressure()) {
79 gezelter 1324 sprintf(painCave.errMsg,
80     "SMIPDynamics error: You can't use the SMIPD integrator\n"
81     " without a targetPressure!\n");
82 chuckv 1293 painCave.isFatal = 1;
83     simError();
84     } else {
85 gezelter 1324 // Convert pressure from atm -> amu/(fs^2*Ang)
86     targetPressure_ = simParams->getTargetPressure() /
87     OOPSEConstant::pressureConvert;
88 chuckv 1293 }
89    
90     if (simParams->getUsePeriodicBoundaryConditions()) {
91 gezelter 1324 sprintf(painCave.errMsg,
92     "SMIPDynamics error: You can't use the SMIPD integrator\n"
93     " with periodic boundary conditions!\n");
94 chuckv 1293 painCave.isFatal = 1;
95     simError();
96     }
97 gezelter 1324
98 chuckv 1316 if (!simParams->haveViscosity()) {
99 gezelter 1324 sprintf(painCave.errMsg,
100     "SMIPDynamics error: You can't use the SMIPD integrator\n"
101     " without a viscosity!\n");
102 chuckv 1316 painCave.isFatal = 1;
103     painCave.severity = OOPSE_ERROR;
104     simError();
105 chuckv 1323 }else{
106     viscosity_ = simParams->getViscosity();
107 chuckv 1316 }
108 gezelter 1324
109 chuckv 1323 dt_ = simParams->getDt();
110 gezelter 1324
111     variance_ = 2.0 * OOPSEConstant::kb * targetTemp_ / dt_;
112 chuckv 1307
113 chuckv 1325 // Build the hydroProp map:
114     std::map<std::string, HydroProp*> hydroPropMap;
115    
116 chuckv 1293 Molecule* mol;
117     StuntDouble* integrableObject;
118     SimInfo::MoleculeIterator i;
119 chuckv 1325 Molecule::IntegrableObjectIterator j;
120     bool needHydroPropFile = false;
121    
122     for (mol = info->beginMolecule(i); mol != NULL;
123     mol = info->nextMolecule(i)) {
124     for (integrableObject = mol->beginIntegrableObject(j);
125     integrableObject != NULL;
126     integrableObject = mol->nextIntegrableObject(j)) {
127    
128     if (integrableObject->isRigidBody()) {
129     RigidBody* rb = static_cast<RigidBody*>(integrableObject);
130     if (rb->getNumAtoms() > 1) needHydroPropFile = true;
131     }
132    
133     }
134     }
135 chuckv 1323
136 chuckv 1325 hydroProps_.resize(info->getNIntegrableObjects());
137    
138     if (needHydroPropFile) {
139     if (simParams->haveHydroPropFile()) {
140     hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
141     } else {
142     sprintf( painCave.errMsg,
143     "HydroPropFile must be set to a file name if SMIPDynamics\n"
144     "\tis specified for rigidBodies which contain more than one atom\n"
145     "\tTo create a HydroPropFile, run the \"Hydro\" program.\n\n");
146     painCave.severity = OOPSE_ERROR;
147     painCave.isFatal = 1;
148     simError();
149     }
150    
151    
152    
153    
154    
155    
156     for (mol = info->beginMolecule(i); mol != NULL;
157     mol = info->nextMolecule(i)) {
158     for (integrableObject = mol->beginIntegrableObject(j);
159     integrableObject != NULL;
160     integrableObject = mol->nextIntegrableObject(j)) {
161    
162     std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
163     if (iter != hydroPropMap.end()) {
164     hydroProps_[integrableObject->getLocalIndex()] = iter->second;
165     } else {
166     sprintf( painCave.errMsg,
167     "Can not find resistance tensor for atom [%s]\n",
168     integrableObject->getType().c_str());
169     painCave.severity = OOPSE_ERROR;
170     painCave.isFatal = 1;
171     simError();
172     }
173     }
174     }
175     } else {
176    
177     std::map<std::string, HydroProp*> hydroPropMap;
178     for (mol = info->beginMolecule(i); mol != NULL;
179     mol = info->nextMolecule(i)) {
180     for (integrableObject = mol->beginIntegrableObject(j);
181     integrableObject != NULL;
182     integrableObject = mol->nextIntegrableObject(j)) {
183     Shape* currShape = NULL;
184    
185     if (integrableObject->isAtom()){
186     Atom* atom = static_cast<Atom*>(integrableObject);
187     AtomType* atomType = atom->getAtomType();
188     if (atomType->isGayBerne()) {
189     DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType);
190     GenericData* data = dAtomType->getPropertyByName("GayBerne");
191     if (data != NULL) {
192     GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data);
193    
194     if (gayBerneData != NULL) {
195     GayBerneParam gayBerneParam = gayBerneData->getData();
196     currShape = new Ellipsoid(V3Zero,
197     gayBerneParam.GB_l / 2.0,
198     gayBerneParam.GB_d / 2.0,
199     Mat3x3d::identity());
200     } else {
201     sprintf( painCave.errMsg,
202     "Can not cast GenericData to GayBerneParam\n");
203     painCave.severity = OOPSE_ERROR;
204     painCave.isFatal = 1;
205     simError();
206     }
207     } else {
208     sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n");
209     painCave.severity = OOPSE_ERROR;
210     painCave.isFatal = 1;
211     simError();
212     }
213     } else {
214     if (atomType->isLennardJones()){
215     GenericData* data = atomType->getPropertyByName("LennardJones");
216     if (data != NULL) {
217     LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
218     if (ljData != NULL) {
219     LJParam ljParam = ljData->getData();
220     currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0);
221     } else {
222     sprintf( painCave.errMsg,
223     "Can not cast GenericData to LJParam\n");
224     painCave.severity = OOPSE_ERROR;
225     painCave.isFatal = 1;
226     simError();
227     }
228     }
229     } else {
230     int aNum = etab.GetAtomicNum((atom->getType()).c_str());
231     if (aNum != 0) {
232     currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
233     } else {
234     sprintf( painCave.errMsg,
235     "Could not find atom type in default element.txt\n");
236     painCave.severity = OOPSE_ERROR;
237     painCave.isFatal = 1;
238     simError();
239     }
240     }
241     }
242     }
243     HydroProp* currHydroProp = currShape->getHydroProp(viscosity_, targetTemp_);
244     std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
245     if (iter != hydroPropMap.end()) {
246     hydroProps_[integrableObject->getLocalIndex()] = iter->second;
247     } else {
248     currHydroProp->complete();
249     hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
250     hydroProps_[integrableObject->getLocalIndex()] = currHydroProp;
251     }
252     }
253     }
254     }
255    
256 gezelter 1324 // Build a vector of integrable objects to determine if the are
257     // surface atoms
258 chuckv 1325
259 gezelter 1324 for (mol = info_->beginMolecule(i); mol != NULL;
260     mol = info_->nextMolecule(i)) {
261     for (integrableObject = mol->beginIntegrableObject(j);
262     integrableObject != NULL;
263 chuckv 1293 integrableObject = mol->nextIntegrableObject(j)) {
264     localSites_.push_back(integrableObject);
265     }
266 gezelter 1324 }
267 chuckv 1293 }
268 chuckv 1325
269     std::map<std::string, HydroProp*> SMIPDForceManager::parseFrictionFile(const std::string& filename) {
270     std::map<std::string, HydroProp*> props;
271     std::ifstream ifs(filename.c_str());
272     if (ifs.is_open()) {
273    
274     }
275    
276     const unsigned int BufferSize = 65535;
277     char buffer[BufferSize];
278     while (ifs.getline(buffer, BufferSize)) {
279     HydroProp* currProp = new HydroProp(buffer);
280     props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
281     }
282    
283     return props;
284     }
285    
286 chuckv 1293 void SMIPDForceManager::postCalculation(bool needStress){
287     SimInfo::MoleculeIterator i;
288     Molecule::IntegrableObjectIterator j;
289     Molecule* mol;
290     StuntDouble* integrableObject;
291 chuckv 1325
292     RealType mass;
293     Vector3d pos;
294     Vector3d frc;
295     Mat3x3d A;
296     Mat3x3d Atrans;
297     Vector3d Tb;
298     Vector3d ji;
299     int index = 0;
300    
301 gezelter 1324 // Compute surface Mesh
302 chuckv 1293 surfaceMesh_->computeHull(localSites_);
303 chuckv 1325
304 gezelter 1324 // Get total area and number of surface stunt doubles
305     RealType area = surfaceMesh_->getArea();
306 chuckv 1325 int nSurfaceSDs = surfaceMesh_->getNs();
307 chuckv 1308 std::vector<Triangle> sMesh = surfaceMesh_->getMesh();
308 chuckv 1307 int nTriangles = sMesh.size();
309    
310 chuckv 1325 // Loop over the mesh faces and apply external pressure to each
311     // of the faces
312 chuckv 1308 std::vector<Triangle>::iterator face;
313 chuckv 1302 std::vector<StuntDouble*>::iterator vertex;
314     int thisNumber = 0;
315 chuckv 1293 for (face = sMesh.begin(); face != sMesh.end(); ++face){
316    
317 chuckv 1308 Triangle thisTriangle = *face;
318     std::vector<StuntDouble*> vertexSDs = thisTriangle.getVertices();
319 chuckv 1316 RealType thisArea = thisTriangle.getArea();
320 chuckv 1308 Vector3d unitNormal = thisTriangle.getNormal();
321 chuckv 1302 unitNormal.normalize();
322 chuckv 1308 Vector3d centroid = thisTriangle.getCentroid();
323 chuckv 1325 Vector3d extPressure = - unitNormal * (targetPressure_ * thisArea)
324     / OOPSEConstant::energyConvert;
325 gezelter 1324
326 chuckv 1325 for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){
327     if ((*vertex) != NULL){
328     Vector3d vertexForce = extPressure/3.0;
329     (*vertex)->addFrc(vertexForce);
330    
331     if ((*vertex)->isDirectional()){
332 chuckv 1307 Vector3d vertexPos = (*vertex)->getPos();
333     Vector3d vertexCentroidVector = vertexPos - centroid;
334     (*vertex)->addTrq(cross(vertexCentroidVector,vertexForce));
335     }
336     }
337 chuckv 1293 }
338 chuckv 1302 }
339 chuckv 1325
340     // Now loop over all surface particles and apply the drag
341     // and random forces
342 gezelter 1324
343 chuckv 1325 std::vector<StuntDouble*> surfaceSDs = surfaceMesh_->getSurfaceAtoms();
344     for (vertex = surfaceSDs.begin(); vertex != surfaceSDs.end(); ++vertex){
345     integrableObject = *vertex;
346     index = integrableObject->getLocalIndex();
347     mass = integrableObject->getMass();
348     if (integrableObject->isDirectional()){
349    
350     // preliminaries for directional objects:
351    
352     A = integrableObject->getA();
353     Atrans = A.transpose();
354     Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
355    
356     // apply random force and torque at center of resistance
357    
358     Vector3d randomForceBody;
359     Vector3d randomTorqueBody;
360     genRandomForceAndTorque(randomForceBody, randomTorqueBody,
361     index, variance_);
362     Vector3d randomForceLab = Atrans * randomForceBody;
363     Vector3d randomTorqueLab = Atrans * randomTorqueBody;
364     integrableObject->addFrc(randomForceLab);
365     integrableObject->addTrq(randomTorqueLab + cross(rcrLab,
366     randomForceLab ));
367    
368     Mat3x3d I = integrableObject->getI();
369     Vector3d omegaBody;
370    
371     // What remains contains velocity explicitly, but the velocity required
372     // is at the full step: v(t + h), while we have initially the velocity
373     // at the half step: v(t + h/2). We need to iterate to converge the
374     // friction force and friction torque vectors.
375    
376     // this is the velocity at the half-step:
377    
378     Vector3d vel =integrableObject->getVel();
379     Vector3d angMom = integrableObject->getJ();
380    
381     // estimate velocity at full-step using everything but friction forces:
382    
383     frc = integrableObject->getFrc();
384     Vector3d velStep = vel + (dt2_ /mass * OOPSEConstant::energyConvert) * frc;
385    
386     Tb = integrableObject->lab2Body(integrableObject->getTrq());
387     Vector3d angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * Tb;
388    
389     Vector3d omegaLab;
390     Vector3d vcdLab;
391     Vector3d vcdBody;
392     Vector3d frictionForceBody;
393     Vector3d frictionForceLab(0.0);
394     Vector3d oldFFL; // used to test for convergence
395     Vector3d frictionTorqueBody(0.0);
396     Vector3d oldFTB; // used to test for convergence
397     Vector3d frictionTorqueLab;
398     RealType fdot;
399     RealType tdot;
400    
401     //iteration starts here:
402    
403     for (int k = 0; k < maxIterNum_; k++) {
404    
405     if (integrableObject->isLinear()) {
406     int linearAxis = integrableObject->linearAxis();
407     int l = (linearAxis +1 )%3;
408     int m = (linearAxis +2 )%3;
409     omegaBody[l] = angMomStep[l] /I(l, l);
410     omegaBody[m] = angMomStep[m] /I(m, m);
411    
412     } else {
413     omegaBody[0] = angMomStep[0] /I(0, 0);
414     omegaBody[1] = angMomStep[1] /I(1, 1);
415     omegaBody[2] = angMomStep[2] /I(2, 2);
416     }
417    
418     omegaLab = Atrans * omegaBody;
419    
420     // apply friction force and torque at center of resistance
421    
422     vcdLab = velStep + cross(omegaLab, rcrLab);
423     vcdBody = A * vcdLab;
424     frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
425     oldFFL = frictionForceLab;
426     frictionForceLab = Atrans * frictionForceBody;
427     oldFTB = frictionTorqueBody;
428     frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
429     frictionTorqueLab = Atrans * frictionTorqueBody;
430    
431     // re-estimate velocities at full-step using friction forces:
432    
433     velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForceLab);
434     angMomStep = angMom + (dt2_ * OOPSEConstant::energyConvert) * (Tb + frictionTorqueBody);
435    
436     // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
437    
438     fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
439     tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
440    
441     if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
442     break; // iteration ends here
443     }
444    
445     integrableObject->addFrc(frictionForceLab);
446     integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
447    
448    
449     } else {
450     //spherical atom
451    
452     Vector3d randomForce;
453     Vector3d randomTorque;
454     genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
455     integrableObject->addFrc(randomForce);
456    
457     // What remains contains velocity explicitly, but the velocity required
458     // is at the full step: v(t + h), while we have initially the velocity
459     // at the half step: v(t + h/2). We need to iterate to converge the
460     // friction force vector.
461    
462     // this is the velocity at the half-step:
463    
464     Vector3d vel =integrableObject->getVel();
465    
466     //estimate velocity at full-step using everything but friction forces:
467    
468     frc = integrableObject->getFrc();
469     Vector3d velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * frc;
470    
471     Vector3d frictionForce(0.0);
472     Vector3d oldFF; // used to test for convergence
473     RealType fdot;
474    
475     //iteration starts here:
476    
477     for (int k = 0; k < maxIterNum_; k++) {
478    
479     oldFF = frictionForce;
480     frictionForce = -hydroProps_[index]->getXitt() * velStep;
481     //frictionForce = -gamma_t*velStep;
482     // re-estimate velocities at full-step using friction forces:
483    
484     velStep = vel + (dt2_ / mass * OOPSEConstant::energyConvert) * (frc + frictionForce);
485    
486     // check for convergence (if the vector has converged, fdot will be 1.0):
487    
488     fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
489    
490     if (fabs(1.0 - fdot) <= forceTolerance_)
491     break; // iteration ends here
492     }
493    
494     integrableObject->addFrc(frictionForce);
495    
496     }
497     }
498    
499     veloMunge->removeComDrift();
500     veloMunge->removeAngularDrift();
501    
502 chuckv 1302 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
503 chuckv 1316 currSnapshot->setVolume(surfaceMesh_->getVolume());
504 chuckv 1302 ForceManager::postCalculation(needStress);
505 chuckv 1293 }
506    
507 chuckv 1325 void SMIPDForceManager::genRandomForceAndTorque(Vector3d& force,
508     Vector3d& torque,
509     unsigned int index,
510     RealType variance) {
511    
512     Vector<RealType, 6> Z;
513     Vector<RealType, 6> generalForce;
514    
515     Z[0] = randNumGen_.randNorm(0, variance);
516     Z[1] = randNumGen_.randNorm(0, variance);
517     Z[2] = randNumGen_.randNorm(0, variance);
518     Z[3] = randNumGen_.randNorm(0, variance);
519     Z[4] = randNumGen_.randNorm(0, variance);
520     Z[5] = randNumGen_.randNorm(0, variance);
521    
522 chuckv 1293
523 chuckv 1325 generalForce = hydroProps_[index]->getS()*Z;
524    
525     force[0] = generalForce[0];
526     force[1] = generalForce[1];
527     force[2] = generalForce[2];
528     torque[0] = generalForce[3];
529     torque[1] = generalForce[4];
530     torque[2] = generalForce[5];
531     }
532 chuckv 1293 }

Properties

Name Value
svn:executable *