1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "integrators/RNEMD.hpp" |
44 |
#include "math/Vector3.hpp" |
45 |
#include "math/Vector.hpp" |
46 |
#include "math/SquareMatrix3.hpp" |
47 |
#include "math/Polynomial.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "primitives/StuntDouble.hpp" |
50 |
#include "utils/PhysicalConstants.hpp" |
51 |
#include "utils/Tuple.hpp" |
52 |
|
53 |
#ifndef IS_MPI |
54 |
#include "math/SeqRandNumGen.hpp" |
55 |
#else |
56 |
#include "math/ParallelRandNumGen.hpp" |
57 |
#endif |
58 |
|
59 |
#define HONKING_LARGE_VALUE 1.0e10 |
60 |
|
61 |
using namespace std; |
62 |
namespace OpenMD { |
63 |
|
64 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), |
65 |
usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
66 |
|
67 |
failTrialCount_ = 0; |
68 |
failRootCount_ = 0; |
69 |
|
70 |
int seedValue; |
71 |
Globals * simParams = info->getSimParams(); |
72 |
|
73 |
stringToEnumMap_["KineticSwap"] = rnemdKineticSwap; |
74 |
stringToEnumMap_["KineticScale"] = rnemdKineticScale; |
75 |
stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM; |
76 |
stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM; |
77 |
stringToEnumMap_["PxScale"] = rnemdPxScale; |
78 |
stringToEnumMap_["PyScale"] = rnemdPyScale; |
79 |
stringToEnumMap_["PzScale"] = rnemdPzScale; |
80 |
stringToEnumMap_["Px"] = rnemdPx; |
81 |
stringToEnumMap_["Py"] = rnemdPy; |
82 |
stringToEnumMap_["Pz"] = rnemdPz; |
83 |
stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV; |
84 |
stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM; |
85 |
stringToEnumMap_["Unknown"] = rnemdUnknown; |
86 |
|
87 |
rnemdObjectSelection_ = simParams->getRNEMD_objectSelection(); |
88 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
89 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
90 |
|
91 |
// do some sanity checking |
92 |
|
93 |
int selectionCount = seleMan_.getSelectionCount(); |
94 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
95 |
|
96 |
if (selectionCount > nIntegrable) { |
97 |
sprintf(painCave.errMsg, |
98 |
"RNEMD: The current RNEMD_objectSelection,\n" |
99 |
"\t\t%s\n" |
100 |
"\thas resulted in %d selected objects. However,\n" |
101 |
"\tthe total number of integrable objects in the system\n" |
102 |
"\tis only %d. This is almost certainly not what you want\n" |
103 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
104 |
"\tselector in the selection script!\n", |
105 |
rnemdObjectSelection_.c_str(), |
106 |
selectionCount, nIntegrable); |
107 |
painCave.isFatal = 0; |
108 |
painCave.severity = OPENMD_WARNING; |
109 |
simError(); |
110 |
} |
111 |
|
112 |
const string st = simParams->getRNEMD_exchangeType(); |
113 |
|
114 |
map<string, RNEMDTypeEnum>::iterator i; |
115 |
i = stringToEnumMap_.find(st); |
116 |
rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second; |
117 |
if (rnemdType_ == rnemdUnknown) { |
118 |
sprintf(painCave.errMsg, |
119 |
"RNEMD: The current RNEMD_exchangeType,\n" |
120 |
"\t\t%s\n" |
121 |
"\tis not one of the recognized exchange types.\n", |
122 |
st.c_str()); |
123 |
painCave.isFatal = 1; |
124 |
painCave.severity = OPENMD_ERROR; |
125 |
simError(); |
126 |
} |
127 |
|
128 |
outputTemp_ = false; |
129 |
if (simParams->haveRNEMD_outputTemperature()) { |
130 |
outputTemp_ = simParams->getRNEMD_outputTemperature(); |
131 |
} else if ((rnemdType_ == rnemdKineticSwap) || |
132 |
(rnemdType_ == rnemdKineticScale) || |
133 |
(rnemdType_ == rnemdKineticScaleVAM) || |
134 |
(rnemdType_ == rnemdKineticScaleAM)) { |
135 |
outputTemp_ = true; |
136 |
} |
137 |
outputVx_ = false; |
138 |
if (simParams->haveRNEMD_outputVx()) { |
139 |
outputVx_ = simParams->getRNEMD_outputVx(); |
140 |
} else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) { |
141 |
outputVx_ = true; |
142 |
} |
143 |
outputVy_ = false; |
144 |
if (simParams->haveRNEMD_outputVy()) { |
145 |
outputVy_ = simParams->getRNEMD_outputVy(); |
146 |
} else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) { |
147 |
outputVy_ = true; |
148 |
} |
149 |
output3DTemp_ = false; |
150 |
if (simParams->haveRNEMD_outputXyzTemperature()) { |
151 |
output3DTemp_ = simParams->getRNEMD_outputXyzTemperature(); |
152 |
} |
153 |
outputRotTemp_ = false; |
154 |
if (simParams->haveRNEMD_outputRotTemperature()) { |
155 |
outputRotTemp_ = simParams->getRNEMD_outputRotTemperature(); |
156 |
} |
157 |
|
158 |
#ifdef IS_MPI |
159 |
if (worldRank == 0) { |
160 |
#endif |
161 |
|
162 |
//may have rnemdWriter separately |
163 |
string rnemdFileName; |
164 |
|
165 |
if (outputTemp_) { |
166 |
rnemdFileName = "temperature.log"; |
167 |
tempLog_.open(rnemdFileName.c_str()); |
168 |
} |
169 |
if (outputVx_) { |
170 |
rnemdFileName = "velocityX.log"; |
171 |
vxzLog_.open(rnemdFileName.c_str()); |
172 |
} |
173 |
if (outputVy_) { |
174 |
rnemdFileName = "velocityY.log"; |
175 |
vyzLog_.open(rnemdFileName.c_str()); |
176 |
} |
177 |
|
178 |
if (output3DTemp_) { |
179 |
rnemdFileName = "temperatureX.log"; |
180 |
xTempLog_.open(rnemdFileName.c_str()); |
181 |
rnemdFileName = "temperatureY.log"; |
182 |
yTempLog_.open(rnemdFileName.c_str()); |
183 |
rnemdFileName = "temperatureZ.log"; |
184 |
zTempLog_.open(rnemdFileName.c_str()); |
185 |
} |
186 |
if (outputRotTemp_) { |
187 |
rnemdFileName = "temperatureR.log"; |
188 |
rotTempLog_.open(rnemdFileName.c_str()); |
189 |
} |
190 |
|
191 |
#ifdef IS_MPI |
192 |
} |
193 |
#endif |
194 |
|
195 |
set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime()); |
196 |
set_RNEMD_nBins(simParams->getRNEMD_nBins()); |
197 |
midBin_ = nBins_ / 2; |
198 |
if (simParams->haveRNEMD_binShift()) { |
199 |
if (simParams->getRNEMD_binShift()) { |
200 |
zShift_ = 0.5 / (RealType)(nBins_); |
201 |
} else { |
202 |
zShift_ = 0.0; |
203 |
} |
204 |
} else { |
205 |
zShift_ = 0.0; |
206 |
} |
207 |
//cerr << "I shift slabs by " << zShift_ << " Lz\n"; |
208 |
//shift slabs by half slab width, maybe useful in heterogeneous systems |
209 |
//set to 0.0 if not using it; N/A in status output yet |
210 |
if (simParams->haveRNEMD_logWidth()) { |
211 |
set_RNEMD_logWidth(simParams->getRNEMD_logWidth()); |
212 |
/*arbitary rnemdLogWidth_, no checking; |
213 |
if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) { |
214 |
cerr << "WARNING! RNEMD_logWidth has abnormal value!\n"; |
215 |
cerr << "Automaically set back to default.\n"; |
216 |
rnemdLogWidth_ = nBins_; |
217 |
}*/ |
218 |
} else { |
219 |
set_RNEMD_logWidth(nBins_); |
220 |
} |
221 |
tempHist_.resize(rnemdLogWidth_, 0.0); |
222 |
tempCount_.resize(rnemdLogWidth_, 0); |
223 |
pxzHist_.resize(rnemdLogWidth_, 0.0); |
224 |
//vxzCount_.resize(rnemdLogWidth_, 0); |
225 |
pyzHist_.resize(rnemdLogWidth_, 0.0); |
226 |
//vyzCount_.resize(rnemdLogWidth_, 0); |
227 |
|
228 |
mHist_.resize(rnemdLogWidth_, 0.0); |
229 |
xTempHist_.resize(rnemdLogWidth_, 0.0); |
230 |
yTempHist_.resize(rnemdLogWidth_, 0.0); |
231 |
zTempHist_.resize(rnemdLogWidth_, 0.0); |
232 |
xyzTempCount_.resize(rnemdLogWidth_, 0); |
233 |
rotTempHist_.resize(rnemdLogWidth_, 0.0); |
234 |
rotTempCount_.resize(rnemdLogWidth_, 0); |
235 |
|
236 |
set_RNEMD_exchange_total(0.0); |
237 |
if (simParams->haveRNEMD_targetFlux()) { |
238 |
set_RNEMD_target_flux(simParams->getRNEMD_targetFlux()); |
239 |
} else { |
240 |
set_RNEMD_target_flux(0.0); |
241 |
} |
242 |
if (simParams->haveRNEMD_targetJzKE()) { |
243 |
set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE()); |
244 |
} else { |
245 |
set_RNEMD_target_JzKE(0.0); |
246 |
} |
247 |
if (simParams->haveRNEMD_targetJzpx()) { |
248 |
set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx()); |
249 |
} else { |
250 |
set_RNEMD_target_jzpx(0.0); |
251 |
} |
252 |
jzp_.x() = targetJzpx_; |
253 |
njzp_.x() = -targetJzpx_; |
254 |
if (simParams->haveRNEMD_targetJzpy()) { |
255 |
set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy()); |
256 |
} else { |
257 |
set_RNEMD_target_jzpy(0.0); |
258 |
} |
259 |
jzp_.y() = targetJzpy_; |
260 |
njzp_.y() = -targetJzpy_; |
261 |
if (simParams->haveRNEMD_targetJzpz()) { |
262 |
set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz()); |
263 |
} else { |
264 |
set_RNEMD_target_jzpz(0.0); |
265 |
} |
266 |
jzp_.z() = targetJzpz_; |
267 |
njzp_.z() = -targetJzpz_; |
268 |
|
269 |
#ifndef IS_MPI |
270 |
if (simParams->haveSeed()) { |
271 |
seedValue = simParams->getSeed(); |
272 |
randNumGen_ = new SeqRandNumGen(seedValue); |
273 |
}else { |
274 |
randNumGen_ = new SeqRandNumGen(); |
275 |
} |
276 |
#else |
277 |
if (simParams->haveSeed()) { |
278 |
seedValue = simParams->getSeed(); |
279 |
randNumGen_ = new ParallelRandNumGen(seedValue); |
280 |
}else { |
281 |
randNumGen_ = new ParallelRandNumGen(); |
282 |
} |
283 |
#endif |
284 |
} |
285 |
|
286 |
RNEMD::~RNEMD() { |
287 |
delete randNumGen_; |
288 |
|
289 |
#ifdef IS_MPI |
290 |
if (worldRank == 0) { |
291 |
#endif |
292 |
|
293 |
sprintf(painCave.errMsg, |
294 |
"RNEMD: total failed trials: %d\n", |
295 |
failTrialCount_); |
296 |
painCave.isFatal = 0; |
297 |
painCave.severity = OPENMD_INFO; |
298 |
simError(); |
299 |
|
300 |
if (outputTemp_) tempLog_.close(); |
301 |
if (outputVx_) vxzLog_.close(); |
302 |
if (outputVy_) vyzLog_.close(); |
303 |
|
304 |
if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || |
305 |
rnemdType_ == rnemdPyScale) { |
306 |
sprintf(painCave.errMsg, |
307 |
"RNEMD: total root-checking warnings: %d\n", |
308 |
failRootCount_); |
309 |
painCave.isFatal = 0; |
310 |
painCave.severity = OPENMD_INFO; |
311 |
simError(); |
312 |
} |
313 |
if (output3DTemp_) { |
314 |
xTempLog_.close(); |
315 |
yTempLog_.close(); |
316 |
zTempLog_.close(); |
317 |
} |
318 |
if (outputRotTemp_) rotTempLog_.close(); |
319 |
|
320 |
#ifdef IS_MPI |
321 |
} |
322 |
#endif |
323 |
} |
324 |
|
325 |
void RNEMD::doSwap() { |
326 |
|
327 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
328 |
Mat3x3d hmat = currentSnap_->getHmat(); |
329 |
|
330 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
331 |
|
332 |
int selei; |
333 |
StuntDouble* sd; |
334 |
int idx; |
335 |
|
336 |
RealType min_val; |
337 |
bool min_found = false; |
338 |
StuntDouble* min_sd; |
339 |
|
340 |
RealType max_val; |
341 |
bool max_found = false; |
342 |
StuntDouble* max_sd; |
343 |
|
344 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
345 |
sd = seleMan_.nextSelected(selei)) { |
346 |
|
347 |
idx = sd->getLocalIndex(); |
348 |
|
349 |
Vector3d pos = sd->getPos(); |
350 |
|
351 |
// wrap the stuntdouble's position back into the box: |
352 |
|
353 |
if (usePeriodicBoundaryConditions_) |
354 |
currentSnap_->wrapVector(pos); |
355 |
|
356 |
// which bin is this stuntdouble in? |
357 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
358 |
|
359 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_; |
360 |
|
361 |
|
362 |
// if we're in bin 0 or the middleBin |
363 |
if (binNo == 0 || binNo == midBin_) { |
364 |
|
365 |
RealType mass = sd->getMass(); |
366 |
Vector3d vel = sd->getVel(); |
367 |
RealType value; |
368 |
|
369 |
switch(rnemdType_) { |
370 |
case rnemdKineticSwap : |
371 |
|
372 |
value = mass * vel.lengthSquare(); |
373 |
|
374 |
if (sd->isDirectional()) { |
375 |
Vector3d angMom = sd->getJ(); |
376 |
Mat3x3d I = sd->getI(); |
377 |
|
378 |
if (sd->isLinear()) { |
379 |
int i = sd->linearAxis(); |
380 |
int j = (i + 1) % 3; |
381 |
int k = (i + 2) % 3; |
382 |
value += angMom[j] * angMom[j] / I(j, j) + |
383 |
angMom[k] * angMom[k] / I(k, k); |
384 |
} else { |
385 |
value += angMom[0]*angMom[0]/I(0, 0) |
386 |
+ angMom[1]*angMom[1]/I(1, 1) |
387 |
+ angMom[2]*angMom[2]/I(2, 2); |
388 |
} |
389 |
} //angular momenta exchange enabled |
390 |
//energyConvert temporarily disabled |
391 |
//make exchangeSum_ comparable between swap & scale |
392 |
//value = value * 0.5 / PhysicalConstants::energyConvert; |
393 |
value *= 0.5; |
394 |
break; |
395 |
case rnemdPx : |
396 |
value = mass * vel[0]; |
397 |
break; |
398 |
case rnemdPy : |
399 |
value = mass * vel[1]; |
400 |
break; |
401 |
case rnemdPz : |
402 |
value = mass * vel[2]; |
403 |
break; |
404 |
default : |
405 |
break; |
406 |
} |
407 |
|
408 |
if (binNo == 0) { |
409 |
if (!min_found) { |
410 |
min_val = value; |
411 |
min_sd = sd; |
412 |
min_found = true; |
413 |
} else { |
414 |
if (min_val > value) { |
415 |
min_val = value; |
416 |
min_sd = sd; |
417 |
} |
418 |
} |
419 |
} else { //midBin_ |
420 |
if (!max_found) { |
421 |
max_val = value; |
422 |
max_sd = sd; |
423 |
max_found = true; |
424 |
} else { |
425 |
if (max_val < value) { |
426 |
max_val = value; |
427 |
max_sd = sd; |
428 |
} |
429 |
} |
430 |
} |
431 |
} |
432 |
} |
433 |
|
434 |
#ifdef IS_MPI |
435 |
int nProc, worldRank; |
436 |
|
437 |
nProc = MPI::COMM_WORLD.Get_size(); |
438 |
worldRank = MPI::COMM_WORLD.Get_rank(); |
439 |
|
440 |
bool my_min_found = min_found; |
441 |
bool my_max_found = max_found; |
442 |
|
443 |
// Even if we didn't find a minimum, did someone else? |
444 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); |
445 |
// Even if we didn't find a maximum, did someone else? |
446 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); |
447 |
#endif |
448 |
|
449 |
if (max_found && min_found) { |
450 |
|
451 |
#ifdef IS_MPI |
452 |
struct { |
453 |
RealType val; |
454 |
int rank; |
455 |
} max_vals, min_vals; |
456 |
|
457 |
if (my_min_found) { |
458 |
min_vals.val = min_val; |
459 |
} else { |
460 |
min_vals.val = HONKING_LARGE_VALUE; |
461 |
} |
462 |
min_vals.rank = worldRank; |
463 |
|
464 |
// Who had the minimum? |
465 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
466 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
467 |
min_val = min_vals.val; |
468 |
|
469 |
if (my_max_found) { |
470 |
max_vals.val = max_val; |
471 |
} else { |
472 |
max_vals.val = -HONKING_LARGE_VALUE; |
473 |
} |
474 |
max_vals.rank = worldRank; |
475 |
|
476 |
// Who had the maximum? |
477 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
478 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
479 |
max_val = max_vals.val; |
480 |
#endif |
481 |
|
482 |
if (min_val < max_val) { |
483 |
|
484 |
#ifdef IS_MPI |
485 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
486 |
// I have both maximum and minimum, so proceed like a single |
487 |
// processor version: |
488 |
#endif |
489 |
|
490 |
Vector3d min_vel = min_sd->getVel(); |
491 |
Vector3d max_vel = max_sd->getVel(); |
492 |
RealType temp_vel; |
493 |
|
494 |
switch(rnemdType_) { |
495 |
case rnemdKineticSwap : |
496 |
min_sd->setVel(max_vel); |
497 |
max_sd->setVel(min_vel); |
498 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
499 |
Vector3d min_angMom = min_sd->getJ(); |
500 |
Vector3d max_angMom = max_sd->getJ(); |
501 |
min_sd->setJ(max_angMom); |
502 |
max_sd->setJ(min_angMom); |
503 |
}//angular momenta exchange enabled |
504 |
//assumes same rigid body identity |
505 |
break; |
506 |
case rnemdPx : |
507 |
temp_vel = min_vel.x(); |
508 |
min_vel.x() = max_vel.x(); |
509 |
max_vel.x() = temp_vel; |
510 |
min_sd->setVel(min_vel); |
511 |
max_sd->setVel(max_vel); |
512 |
break; |
513 |
case rnemdPy : |
514 |
temp_vel = min_vel.y(); |
515 |
min_vel.y() = max_vel.y(); |
516 |
max_vel.y() = temp_vel; |
517 |
min_sd->setVel(min_vel); |
518 |
max_sd->setVel(max_vel); |
519 |
break; |
520 |
case rnemdPz : |
521 |
temp_vel = min_vel.z(); |
522 |
min_vel.z() = max_vel.z(); |
523 |
max_vel.z() = temp_vel; |
524 |
min_sd->setVel(min_vel); |
525 |
max_sd->setVel(max_vel); |
526 |
break; |
527 |
default : |
528 |
break; |
529 |
} |
530 |
|
531 |
#ifdef IS_MPI |
532 |
// the rest of the cases only apply in parallel simulations: |
533 |
} else if (max_vals.rank == worldRank) { |
534 |
// I had the max, but not the minimum |
535 |
|
536 |
Vector3d min_vel; |
537 |
Vector3d max_vel = max_sd->getVel(); |
538 |
MPI::Status status; |
539 |
|
540 |
// point-to-point swap of the velocity vector |
541 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
542 |
min_vals.rank, 0, |
543 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
544 |
min_vals.rank, 0, status); |
545 |
|
546 |
switch(rnemdType_) { |
547 |
case rnemdKineticSwap : |
548 |
max_sd->setVel(min_vel); |
549 |
//angular momenta exchange enabled |
550 |
if (max_sd->isDirectional()) { |
551 |
Vector3d min_angMom; |
552 |
Vector3d max_angMom = max_sd->getJ(); |
553 |
|
554 |
// point-to-point swap of the angular momentum vector |
555 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
556 |
MPI::REALTYPE, min_vals.rank, 1, |
557 |
min_angMom.getArrayPointer(), 3, |
558 |
MPI::REALTYPE, min_vals.rank, 1, |
559 |
status); |
560 |
|
561 |
max_sd->setJ(min_angMom); |
562 |
} |
563 |
break; |
564 |
case rnemdPx : |
565 |
max_vel.x() = min_vel.x(); |
566 |
max_sd->setVel(max_vel); |
567 |
break; |
568 |
case rnemdPy : |
569 |
max_vel.y() = min_vel.y(); |
570 |
max_sd->setVel(max_vel); |
571 |
break; |
572 |
case rnemdPz : |
573 |
max_vel.z() = min_vel.z(); |
574 |
max_sd->setVel(max_vel); |
575 |
break; |
576 |
default : |
577 |
break; |
578 |
} |
579 |
} else if (min_vals.rank == worldRank) { |
580 |
// I had the minimum but not the maximum: |
581 |
|
582 |
Vector3d max_vel; |
583 |
Vector3d min_vel = min_sd->getVel(); |
584 |
MPI::Status status; |
585 |
|
586 |
// point-to-point swap of the velocity vector |
587 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
588 |
max_vals.rank, 0, |
589 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
590 |
max_vals.rank, 0, status); |
591 |
|
592 |
switch(rnemdType_) { |
593 |
case rnemdKineticSwap : |
594 |
min_sd->setVel(max_vel); |
595 |
//angular momenta exchange enabled |
596 |
if (min_sd->isDirectional()) { |
597 |
Vector3d min_angMom = min_sd->getJ(); |
598 |
Vector3d max_angMom; |
599 |
|
600 |
// point-to-point swap of the angular momentum vector |
601 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
602 |
MPI::REALTYPE, max_vals.rank, 1, |
603 |
max_angMom.getArrayPointer(), 3, |
604 |
MPI::REALTYPE, max_vals.rank, 1, |
605 |
status); |
606 |
|
607 |
min_sd->setJ(max_angMom); |
608 |
} |
609 |
break; |
610 |
case rnemdPx : |
611 |
min_vel.x() = max_vel.x(); |
612 |
min_sd->setVel(min_vel); |
613 |
break; |
614 |
case rnemdPy : |
615 |
min_vel.y() = max_vel.y(); |
616 |
min_sd->setVel(min_vel); |
617 |
break; |
618 |
case rnemdPz : |
619 |
min_vel.z() = max_vel.z(); |
620 |
min_sd->setVel(min_vel); |
621 |
break; |
622 |
default : |
623 |
break; |
624 |
} |
625 |
} |
626 |
#endif |
627 |
exchangeSum_ += max_val - min_val; |
628 |
} else { |
629 |
sprintf(painCave.errMsg, |
630 |
"RNEMD: exchange NOT performed because min_val > max_val\n"); |
631 |
painCave.isFatal = 0; |
632 |
painCave.severity = OPENMD_INFO; |
633 |
simError(); |
634 |
failTrialCount_++; |
635 |
} |
636 |
} else { |
637 |
sprintf(painCave.errMsg, |
638 |
"RNEMD: exchange NOT performed because selected object\n" |
639 |
"\tnot present in at least one of the two slabs.\n"); |
640 |
painCave.isFatal = 0; |
641 |
painCave.severity = OPENMD_INFO; |
642 |
simError(); |
643 |
failTrialCount_++; |
644 |
} |
645 |
|
646 |
} |
647 |
|
648 |
void RNEMD::doScale() { |
649 |
|
650 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
651 |
Mat3x3d hmat = currentSnap_->getHmat(); |
652 |
|
653 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
654 |
|
655 |
int selei; |
656 |
StuntDouble* sd; |
657 |
int idx; |
658 |
|
659 |
vector<StuntDouble*> hotBin, coldBin; |
660 |
|
661 |
RealType Phx = 0.0; |
662 |
RealType Phy = 0.0; |
663 |
RealType Phz = 0.0; |
664 |
RealType Khx = 0.0; |
665 |
RealType Khy = 0.0; |
666 |
RealType Khz = 0.0; |
667 |
RealType Khw = 0.0; |
668 |
RealType Pcx = 0.0; |
669 |
RealType Pcy = 0.0; |
670 |
RealType Pcz = 0.0; |
671 |
RealType Kcx = 0.0; |
672 |
RealType Kcy = 0.0; |
673 |
RealType Kcz = 0.0; |
674 |
RealType Kcw = 0.0; |
675 |
|
676 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
677 |
sd = seleMan_.nextSelected(selei)) { |
678 |
|
679 |
idx = sd->getLocalIndex(); |
680 |
|
681 |
Vector3d pos = sd->getPos(); |
682 |
|
683 |
// wrap the stuntdouble's position back into the box: |
684 |
|
685 |
if (usePeriodicBoundaryConditions_) |
686 |
currentSnap_->wrapVector(pos); |
687 |
|
688 |
// which bin is this stuntdouble in? |
689 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
690 |
|
691 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_; |
692 |
|
693 |
// if we're in bin 0 or the middleBin |
694 |
if (binNo == 0 || binNo == midBin_) { |
695 |
|
696 |
RealType mass = sd->getMass(); |
697 |
Vector3d vel = sd->getVel(); |
698 |
|
699 |
if (binNo == 0) { |
700 |
hotBin.push_back(sd); |
701 |
Phx += mass * vel.x(); |
702 |
Phy += mass * vel.y(); |
703 |
Phz += mass * vel.z(); |
704 |
Khx += mass * vel.x() * vel.x(); |
705 |
Khy += mass * vel.y() * vel.y(); |
706 |
Khz += mass * vel.z() * vel.z(); |
707 |
//if (rnemdType_ == rnemdKineticScaleVAM) { |
708 |
if (sd->isDirectional()) { |
709 |
Vector3d angMom = sd->getJ(); |
710 |
Mat3x3d I = sd->getI(); |
711 |
if (sd->isLinear()) { |
712 |
int i = sd->linearAxis(); |
713 |
int j = (i + 1) % 3; |
714 |
int k = (i + 2) % 3; |
715 |
Khw += angMom[j] * angMom[j] / I(j, j) + |
716 |
angMom[k] * angMom[k] / I(k, k); |
717 |
} else { |
718 |
Khw += angMom[0]*angMom[0]/I(0, 0) |
719 |
+ angMom[1]*angMom[1]/I(1, 1) |
720 |
+ angMom[2]*angMom[2]/I(2, 2); |
721 |
} |
722 |
} |
723 |
//} |
724 |
} else { //midBin_ |
725 |
coldBin.push_back(sd); |
726 |
Pcx += mass * vel.x(); |
727 |
Pcy += mass * vel.y(); |
728 |
Pcz += mass * vel.z(); |
729 |
Kcx += mass * vel.x() * vel.x(); |
730 |
Kcy += mass * vel.y() * vel.y(); |
731 |
Kcz += mass * vel.z() * vel.z(); |
732 |
//if (rnemdType_ == rnemdKineticScaleVAM) { |
733 |
if (sd->isDirectional()) { |
734 |
Vector3d angMom = sd->getJ(); |
735 |
Mat3x3d I = sd->getI(); |
736 |
if (sd->isLinear()) { |
737 |
int i = sd->linearAxis(); |
738 |
int j = (i + 1) % 3; |
739 |
int k = (i + 2) % 3; |
740 |
Kcw += angMom[j] * angMom[j] / I(j, j) + |
741 |
angMom[k] * angMom[k] / I(k, k); |
742 |
} else { |
743 |
Kcw += angMom[0]*angMom[0]/I(0, 0) |
744 |
+ angMom[1]*angMom[1]/I(1, 1) |
745 |
+ angMom[2]*angMom[2]/I(2, 2); |
746 |
} |
747 |
} |
748 |
//} |
749 |
} |
750 |
} |
751 |
} |
752 |
|
753 |
Khx *= 0.5; |
754 |
Khy *= 0.5; |
755 |
Khz *= 0.5; |
756 |
Khw *= 0.5; |
757 |
Kcx *= 0.5; |
758 |
Kcy *= 0.5; |
759 |
Kcz *= 0.5; |
760 |
Kcw *= 0.5; |
761 |
|
762 |
std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz |
763 |
<< "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy |
764 |
<< "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n"; |
765 |
std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz |
766 |
<< "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n"; |
767 |
|
768 |
#ifdef IS_MPI |
769 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); |
770 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); |
771 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); |
772 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); |
773 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); |
774 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); |
775 |
|
776 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); |
777 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); |
778 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); |
779 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); |
780 |
|
781 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); |
782 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); |
783 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); |
784 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); |
785 |
#endif |
786 |
|
787 |
//solve coldBin coeff's first |
788 |
RealType px = Pcx / Phx; |
789 |
RealType py = Pcy / Phy; |
790 |
RealType pz = Pcz / Phz; |
791 |
RealType c, x, y, z; |
792 |
bool successfulScale = false; |
793 |
if ((rnemdType_ == rnemdKineticScaleVAM) || |
794 |
(rnemdType_ == rnemdKineticScaleAM)) { |
795 |
//may need sanity check Khw & Kcw > 0 |
796 |
|
797 |
if (rnemdType_ == rnemdKineticScaleVAM) { |
798 |
c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw); |
799 |
} else { |
800 |
c = 1.0 - targetFlux_ / Kcw; |
801 |
} |
802 |
|
803 |
if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients |
804 |
c = sqrt(c); |
805 |
std::cerr << "cold slab scaling coefficient: " << c << endl; |
806 |
//now convert to hotBin coefficient |
807 |
RealType w = 0.0; |
808 |
if (rnemdType_ == rnemdKineticScaleVAM) { |
809 |
x = 1.0 + px * (1.0 - c); |
810 |
y = 1.0 + py * (1.0 - c); |
811 |
z = 1.0 + pz * (1.0 - c); |
812 |
/* more complicated way |
813 |
w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz |
814 |
+ Khx * px * px + Khy * py * py + Khz * pz * pz) |
815 |
- 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) |
816 |
+ Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) |
817 |
+ Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
818 |
- Kcx - Kcy - Kcz)) / Khw; the following is simpler |
819 |
*/ |
820 |
if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && |
821 |
(fabs(z - 1.0) < 0.1)) { |
822 |
w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y) |
823 |
+ Khz * (1.0 - z * z)) / Khw; |
824 |
}//no need to calculate w if x, y or z is out of range |
825 |
} else { |
826 |
w = 1.0 + targetFlux_ / Khw; |
827 |
} |
828 |
if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients |
829 |
//if w is in the right range, so should be x, y, z. |
830 |
vector<StuntDouble*>::iterator sdi; |
831 |
Vector3d vel; |
832 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
833 |
if (rnemdType_ == rnemdKineticScaleVAM) { |
834 |
vel = (*sdi)->getVel() * c; |
835 |
//vel.x() *= c; |
836 |
//vel.y() *= c; |
837 |
//vel.z() *= c; |
838 |
(*sdi)->setVel(vel); |
839 |
} |
840 |
if ((*sdi)->isDirectional()) { |
841 |
Vector3d angMom = (*sdi)->getJ() * c; |
842 |
//angMom[0] *= c; |
843 |
//angMom[1] *= c; |
844 |
//angMom[2] *= c; |
845 |
(*sdi)->setJ(angMom); |
846 |
} |
847 |
} |
848 |
w = sqrt(w); |
849 |
std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z |
850 |
<< "\twh= " << w << endl; |
851 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
852 |
if (rnemdType_ == rnemdKineticScaleVAM) { |
853 |
vel = (*sdi)->getVel(); |
854 |
vel.x() *= x; |
855 |
vel.y() *= y; |
856 |
vel.z() *= z; |
857 |
(*sdi)->setVel(vel); |
858 |
} |
859 |
if ((*sdi)->isDirectional()) { |
860 |
Vector3d angMom = (*sdi)->getJ() * w; |
861 |
//angMom[0] *= w; |
862 |
//angMom[1] *= w; |
863 |
//angMom[2] *= w; |
864 |
(*sdi)->setJ(angMom); |
865 |
} |
866 |
} |
867 |
successfulScale = true; |
868 |
exchangeSum_ += targetFlux_; |
869 |
} |
870 |
} |
871 |
} else { |
872 |
RealType a000, a110, c0, a001, a111, b01, b11, c1; |
873 |
switch(rnemdType_) { |
874 |
case rnemdKineticScale : |
875 |
/* used hotBin coeff's & only scale x & y dimensions |
876 |
RealType px = Phx / Pcx; |
877 |
RealType py = Phy / Pcy; |
878 |
a110 = Khy; |
879 |
c0 = - Khx - Khy - targetFlux_; |
880 |
a000 = Khx; |
881 |
a111 = Kcy * py * py; |
882 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
883 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_; |
884 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
885 |
a001 = Kcx * px * px; |
886 |
*/ |
887 |
//scale all three dimensions, let c_x = c_y |
888 |
a000 = Kcx + Kcy; |
889 |
a110 = Kcz; |
890 |
c0 = targetFlux_ - Kcx - Kcy - Kcz; |
891 |
a001 = Khx * px * px + Khy * py * py; |
892 |
a111 = Khz * pz * pz; |
893 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
894 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
895 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
896 |
+ Khz * pz * (2.0 + pz) - targetFlux_; |
897 |
break; |
898 |
case rnemdPxScale : |
899 |
c = 1 - targetFlux_ / Pcx; |
900 |
a000 = Kcy; |
901 |
a110 = Kcz; |
902 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
903 |
a001 = py * py * Khy; |
904 |
a111 = pz * pz * Khz; |
905 |
b01 = -2.0 * Khy * py * (1.0 + py); |
906 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
907 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
908 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
909 |
break; |
910 |
case rnemdPyScale : |
911 |
c = 1 - targetFlux_ / Pcy; |
912 |
a000 = Kcx; |
913 |
a110 = Kcz; |
914 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
915 |
a001 = px * px * Khx; |
916 |
a111 = pz * pz * Khz; |
917 |
b01 = -2.0 * Khx * px * (1.0 + px); |
918 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
919 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
920 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
921 |
break; |
922 |
case rnemdPzScale ://we don't really do this, do we? |
923 |
c = 1 - targetFlux_ / Pcz; |
924 |
a000 = Kcx; |
925 |
a110 = Kcy; |
926 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
927 |
a001 = px * px * Khx; |
928 |
a111 = py * py * Khy; |
929 |
b01 = -2.0 * Khx * px * (1.0 + px); |
930 |
b11 = -2.0 * Khy * py * (1.0 + py); |
931 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
932 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
933 |
break; |
934 |
default : |
935 |
break; |
936 |
} |
937 |
|
938 |
RealType v1 = a000 * a111 - a001 * a110; |
939 |
RealType v2 = a000 * b01; |
940 |
RealType v3 = a000 * b11; |
941 |
RealType v4 = a000 * c1 - a001 * c0; |
942 |
RealType v8 = a110 * b01; |
943 |
RealType v10 = - b01 * c0; |
944 |
|
945 |
RealType u0 = v2 * v10 - v4 * v4; |
946 |
RealType u1 = -2.0 * v3 * v4; |
947 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
948 |
RealType u3 = -2.0 * v1 * v3; |
949 |
RealType u4 = - v1 * v1; |
950 |
//rescale coefficients |
951 |
RealType maxAbs = fabs(u0); |
952 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
953 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
954 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
955 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
956 |
u0 /= maxAbs; |
957 |
u1 /= maxAbs; |
958 |
u2 /= maxAbs; |
959 |
u3 /= maxAbs; |
960 |
u4 /= maxAbs; |
961 |
//max_element(start, end) is also available. |
962 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
963 |
poly.setCoefficient(4, u4); |
964 |
poly.setCoefficient(3, u3); |
965 |
poly.setCoefficient(2, u2); |
966 |
poly.setCoefficient(1, u1); |
967 |
poly.setCoefficient(0, u0); |
968 |
vector<RealType> realRoots = poly.FindRealRoots(); |
969 |
|
970 |
vector<RealType>::iterator ri; |
971 |
RealType r1, r2, alpha0; |
972 |
vector<pair<RealType,RealType> > rps; |
973 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
974 |
r2 = *ri; |
975 |
//check if FindRealRoots() give the right answer |
976 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
977 |
sprintf(painCave.errMsg, |
978 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
979 |
painCave.isFatal = 0; |
980 |
simError(); |
981 |
failRootCount_++; |
982 |
} |
983 |
//might not be useful w/o rescaling coefficients |
984 |
alpha0 = -c0 - a110 * r2 * r2; |
985 |
if (alpha0 >= 0.0) { |
986 |
r1 = sqrt(alpha0 / a000); |
987 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
988 |
< 1e-6) |
989 |
{ rps.push_back(make_pair(r1, r2)); } |
990 |
if (r1 > 1e-6) { //r1 non-negative |
991 |
r1 = -r1; |
992 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) |
993 |
< 1e-6) |
994 |
{ rps.push_back(make_pair(r1, r2)); } |
995 |
} |
996 |
} |
997 |
} |
998 |
// Consider combining together the solving pair part w/ the searching |
999 |
// best solution part so that we don't need the pairs vector |
1000 |
if (!rps.empty()) { |
1001 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
1002 |
RealType diff; |
1003 |
pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); |
1004 |
vector<pair<RealType,RealType> >::iterator rpi; |
1005 |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
1006 |
r1 = (*rpi).first; |
1007 |
r2 = (*rpi).second; |
1008 |
switch(rnemdType_) { |
1009 |
case rnemdKineticScale : |
1010 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1011 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
1012 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1013 |
break; |
1014 |
case rnemdPxScale : |
1015 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1016 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
1017 |
break; |
1018 |
case rnemdPyScale : |
1019 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1020 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
1021 |
break; |
1022 |
case rnemdPzScale : |
1023 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
1024 |
+ fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); |
1025 |
default : |
1026 |
break; |
1027 |
} |
1028 |
if (diff < smallestDiff) { |
1029 |
smallestDiff = diff; |
1030 |
bestPair = *rpi; |
1031 |
} |
1032 |
} |
1033 |
#ifdef IS_MPI |
1034 |
if (worldRank == 0) { |
1035 |
#endif |
1036 |
sprintf(painCave.errMsg, |
1037 |
"RNEMD: roots r1= %lf\tr2 = %lf\n", |
1038 |
bestPair.first, bestPair.second); |
1039 |
painCave.isFatal = 0; |
1040 |
painCave.severity = OPENMD_INFO; |
1041 |
simError(); |
1042 |
#ifdef IS_MPI |
1043 |
} |
1044 |
#endif |
1045 |
|
1046 |
switch(rnemdType_) { |
1047 |
case rnemdKineticScale : |
1048 |
x = bestPair.first; |
1049 |
y = bestPair.first; |
1050 |
z = bestPair.second; |
1051 |
break; |
1052 |
case rnemdPxScale : |
1053 |
x = c; |
1054 |
y = bestPair.first; |
1055 |
z = bestPair.second; |
1056 |
break; |
1057 |
case rnemdPyScale : |
1058 |
x = bestPair.first; |
1059 |
y = c; |
1060 |
z = bestPair.second; |
1061 |
break; |
1062 |
case rnemdPzScale : |
1063 |
x = bestPair.first; |
1064 |
y = bestPair.second; |
1065 |
z = c; |
1066 |
break; |
1067 |
default : |
1068 |
break; |
1069 |
} |
1070 |
vector<StuntDouble*>::iterator sdi; |
1071 |
Vector3d vel; |
1072 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1073 |
vel = (*sdi)->getVel(); |
1074 |
vel.x() *= x; |
1075 |
vel.y() *= y; |
1076 |
vel.z() *= z; |
1077 |
(*sdi)->setVel(vel); |
1078 |
} |
1079 |
//convert to hotBin coefficient |
1080 |
x = 1.0 + px * (1.0 - x); |
1081 |
y = 1.0 + py * (1.0 - y); |
1082 |
z = 1.0 + pz * (1.0 - z); |
1083 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1084 |
vel = (*sdi)->getVel(); |
1085 |
vel.x() *= x; |
1086 |
vel.y() *= y; |
1087 |
vel.z() *= z; |
1088 |
(*sdi)->setVel(vel); |
1089 |
} |
1090 |
successfulScale = true; |
1091 |
exchangeSum_ += targetFlux_; |
1092 |
} |
1093 |
} |
1094 |
if (successfulScale != true) { |
1095 |
sprintf(painCave.errMsg, |
1096 |
"RNEMD: exchange NOT performed!\n"); |
1097 |
painCave.isFatal = 0; |
1098 |
painCave.severity = OPENMD_INFO; |
1099 |
simError(); |
1100 |
failTrialCount_++; |
1101 |
} |
1102 |
} |
1103 |
|
1104 |
void RNEMD::doShiftScale() { |
1105 |
|
1106 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1107 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1108 |
|
1109 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1110 |
|
1111 |
int selei; |
1112 |
StuntDouble* sd; |
1113 |
int idx; |
1114 |
|
1115 |
vector<StuntDouble*> hotBin, coldBin; |
1116 |
|
1117 |
Vector3d Ph(V3Zero); |
1118 |
RealType Mh = 0.0; |
1119 |
RealType Kh = 0.0; |
1120 |
Vector3d Pc(V3Zero); |
1121 |
RealType Mc = 0.0; |
1122 |
RealType Kc = 0.0; |
1123 |
|
1124 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1125 |
sd = seleMan_.nextSelected(selei)) { |
1126 |
|
1127 |
idx = sd->getLocalIndex(); |
1128 |
|
1129 |
Vector3d pos = sd->getPos(); |
1130 |
|
1131 |
// wrap the stuntdouble's position back into the box: |
1132 |
|
1133 |
if (usePeriodicBoundaryConditions_) |
1134 |
currentSnap_->wrapVector(pos); |
1135 |
|
1136 |
// which bin is this stuntdouble in? |
1137 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1138 |
|
1139 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_; |
1140 |
|
1141 |
// if we're in bin 0 or the middleBin |
1142 |
if (binNo == 0 || binNo == midBin_) { |
1143 |
|
1144 |
RealType mass = sd->getMass(); |
1145 |
Vector3d vel = sd->getVel(); |
1146 |
|
1147 |
if (binNo == 0) { |
1148 |
hotBin.push_back(sd); |
1149 |
//std::cerr << "before, velocity = " << vel << endl; |
1150 |
Ph += mass * vel; |
1151 |
//std::cerr << "after, velocity = " << vel << endl; |
1152 |
Mh += mass; |
1153 |
Kh += mass * vel.lengthSquare(); |
1154 |
if (rnemdType_ == rnemdShiftScaleVAM) { |
1155 |
if (sd->isDirectional()) { |
1156 |
Vector3d angMom = sd->getJ(); |
1157 |
Mat3x3d I = sd->getI(); |
1158 |
if (sd->isLinear()) { |
1159 |
int i = sd->linearAxis(); |
1160 |
int j = (i + 1) % 3; |
1161 |
int k = (i + 2) % 3; |
1162 |
Kh += angMom[j] * angMom[j] / I(j, j) + |
1163 |
angMom[k] * angMom[k] / I(k, k); |
1164 |
} else { |
1165 |
Kh += angMom[0] * angMom[0] / I(0, 0) + |
1166 |
angMom[1] * angMom[1] / I(1, 1) + |
1167 |
angMom[2] * angMom[2] / I(2, 2); |
1168 |
} |
1169 |
} |
1170 |
} |
1171 |
} else { //midBin_ |
1172 |
coldBin.push_back(sd); |
1173 |
Pc += mass * vel; |
1174 |
Mc += mass; |
1175 |
Kc += mass * vel.lengthSquare(); |
1176 |
if (rnemdType_ == rnemdShiftScaleVAM) { |
1177 |
if (sd->isDirectional()) { |
1178 |
Vector3d angMom = sd->getJ(); |
1179 |
Mat3x3d I = sd->getI(); |
1180 |
if (sd->isLinear()) { |
1181 |
int i = sd->linearAxis(); |
1182 |
int j = (i + 1) % 3; |
1183 |
int k = (i + 2) % 3; |
1184 |
Kc += angMom[j] * angMom[j] / I(j, j) + |
1185 |
angMom[k] * angMom[k] / I(k, k); |
1186 |
} else { |
1187 |
Kc += angMom[0] * angMom[0] / I(0, 0) + |
1188 |
angMom[1] * angMom[1] / I(1, 1) + |
1189 |
angMom[2] * angMom[2] / I(2, 2); |
1190 |
} |
1191 |
} |
1192 |
} |
1193 |
} |
1194 |
} |
1195 |
} |
1196 |
|
1197 |
Kh *= 0.5; |
1198 |
Kc *= 0.5; |
1199 |
|
1200 |
std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc |
1201 |
<< "\tKc= " << Kc << endl; |
1202 |
std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl; |
1203 |
|
1204 |
#ifdef IS_MPI |
1205 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); |
1206 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); |
1207 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); |
1208 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); |
1209 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); |
1210 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); |
1211 |
#endif |
1212 |
|
1213 |
bool successfulExchange = false; |
1214 |
if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty |
1215 |
Vector3d vc = Pc / Mc; |
1216 |
Vector3d ac = njzp_ / Mc + vc; |
1217 |
RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare(); |
1218 |
if (cNumerator > 0.0) { |
1219 |
RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); |
1220 |
if (cDenominator > 0.0) { |
1221 |
RealType c = sqrt(cNumerator / cDenominator); |
1222 |
if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients |
1223 |
Vector3d vh = Ph / Mh; |
1224 |
Vector3d ah = jzp_ / Mh + vh; |
1225 |
RealType hNumerator = Kh + targetJzKE_ |
1226 |
- 0.5 * Mh * ah.lengthSquare(); |
1227 |
if (hNumerator > 0.0) { |
1228 |
RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); |
1229 |
if (hDenominator > 0.0) { |
1230 |
RealType h = sqrt(hNumerator / hDenominator); |
1231 |
if ((h > 0.9) && (h < 1.1)) { |
1232 |
std::cerr << "cold slab scaling coefficient: " << c << "\n"; |
1233 |
std::cerr << "hot slab scaling coefficient: " << h << "\n"; |
1234 |
vector<StuntDouble*>::iterator sdi; |
1235 |
Vector3d vel; |
1236 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
1237 |
//vel = (*sdi)->getVel(); |
1238 |
vel = ((*sdi)->getVel() - vc) * c + ac; |
1239 |
(*sdi)->setVel(vel); |
1240 |
if (rnemdType_ == rnemdShiftScaleVAM) { |
1241 |
if ((*sdi)->isDirectional()) { |
1242 |
Vector3d angMom = (*sdi)->getJ() * c; |
1243 |
(*sdi)->setJ(angMom); |
1244 |
} |
1245 |
} |
1246 |
} |
1247 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
1248 |
//vel = (*sdi)->getVel(); |
1249 |
vel = ((*sdi)->getVel() - vh) * h + ah; |
1250 |
(*sdi)->setVel(vel); |
1251 |
if (rnemdType_ == rnemdShiftScaleVAM) { |
1252 |
if ((*sdi)->isDirectional()) { |
1253 |
Vector3d angMom = (*sdi)->getJ() * h; |
1254 |
(*sdi)->setJ(angMom); |
1255 |
} |
1256 |
} |
1257 |
} |
1258 |
successfulExchange = true; |
1259 |
exchangeSum_ += targetFlux_; |
1260 |
// this is a redundant variable for doShiftScale() so that |
1261 |
// RNEMD can output one exchange quantity needed in a job. |
1262 |
// need a better way to do this. |
1263 |
} |
1264 |
} |
1265 |
} |
1266 |
} |
1267 |
} |
1268 |
} |
1269 |
} |
1270 |
if (successfulExchange != true) { |
1271 |
sprintf(painCave.errMsg, |
1272 |
"RNEMD: exchange NOT performed!\n"); |
1273 |
painCave.isFatal = 0; |
1274 |
painCave.severity = OPENMD_INFO; |
1275 |
simError(); |
1276 |
failTrialCount_++; |
1277 |
} |
1278 |
} |
1279 |
|
1280 |
void RNEMD::doRNEMD() { |
1281 |
|
1282 |
switch(rnemdType_) { |
1283 |
case rnemdKineticScale : |
1284 |
case rnemdKineticScaleVAM : |
1285 |
case rnemdKineticScaleAM : |
1286 |
case rnemdPxScale : |
1287 |
case rnemdPyScale : |
1288 |
case rnemdPzScale : |
1289 |
doScale(); |
1290 |
break; |
1291 |
case rnemdKineticSwap : |
1292 |
case rnemdPx : |
1293 |
case rnemdPy : |
1294 |
case rnemdPz : |
1295 |
doSwap(); |
1296 |
break; |
1297 |
case rnemdShiftScaleV : |
1298 |
case rnemdShiftScaleVAM : |
1299 |
doShiftScale(); |
1300 |
break; |
1301 |
case rnemdUnknown : |
1302 |
default : |
1303 |
break; |
1304 |
} |
1305 |
} |
1306 |
|
1307 |
void RNEMD::collectData() { |
1308 |
|
1309 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1310 |
Mat3x3d hmat = currentSnap_->getHmat(); |
1311 |
|
1312 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
1313 |
|
1314 |
int selei; |
1315 |
StuntDouble* sd; |
1316 |
int idx; |
1317 |
|
1318 |
// alternative approach, track all molecules instead of only those |
1319 |
// selected for scaling/swapping: |
1320 |
/* |
1321 |
SimInfo::MoleculeIterator miter; |
1322 |
vector<StuntDouble*>::iterator iiter; |
1323 |
Molecule* mol; |
1324 |
StuntDouble* integrableObject; |
1325 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
1326 |
mol = info_->nextMolecule(miter)) |
1327 |
integrableObject is essentially sd |
1328 |
for (integrableObject = mol->beginIntegrableObject(iiter); |
1329 |
integrableObject != NULL; |
1330 |
integrableObject = mol->nextIntegrableObject(iiter)) |
1331 |
*/ |
1332 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
1333 |
sd = seleMan_.nextSelected(selei)) { |
1334 |
|
1335 |
idx = sd->getLocalIndex(); |
1336 |
|
1337 |
Vector3d pos = sd->getPos(); |
1338 |
|
1339 |
// wrap the stuntdouble's position back into the box: |
1340 |
|
1341 |
if (usePeriodicBoundaryConditions_) |
1342 |
currentSnap_->wrapVector(pos); |
1343 |
|
1344 |
// which bin is this stuntdouble in? |
1345 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
1346 |
|
1347 |
int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) % |
1348 |
rnemdLogWidth_; |
1349 |
// no symmetrization allowed due to arbitary rnemdLogWidth_ |
1350 |
/* |
1351 |
if (rnemdLogWidth_ == midBin_ + 1) |
1352 |
if (binNo > midBin_) |
1353 |
binNo = nBins_ - binNo; |
1354 |
*/ |
1355 |
RealType mass = sd->getMass(); |
1356 |
mHist_[binNo] += mass; |
1357 |
Vector3d vel = sd->getVel(); |
1358 |
RealType value; |
1359 |
//RealType xVal, yVal, zVal; |
1360 |
|
1361 |
if (outputTemp_) { |
1362 |
value = mass * vel.lengthSquare(); |
1363 |
tempCount_[binNo] += 3; |
1364 |
if (sd->isDirectional()) { |
1365 |
Vector3d angMom = sd->getJ(); |
1366 |
Mat3x3d I = sd->getI(); |
1367 |
if (sd->isLinear()) { |
1368 |
int i = sd->linearAxis(); |
1369 |
int j = (i + 1) % 3; |
1370 |
int k = (i + 2) % 3; |
1371 |
value += angMom[j] * angMom[j] / I(j, j) + |
1372 |
angMom[k] * angMom[k] / I(k, k); |
1373 |
tempCount_[binNo] +=2; |
1374 |
} else { |
1375 |
value += angMom[0] * angMom[0] / I(0, 0) + |
1376 |
angMom[1]*angMom[1]/I(1, 1) + |
1377 |
angMom[2]*angMom[2]/I(2, 2); |
1378 |
tempCount_[binNo] +=3; |
1379 |
} |
1380 |
} |
1381 |
value = value / PhysicalConstants::energyConvert |
1382 |
/ PhysicalConstants::kb;//may move to getStatus() |
1383 |
tempHist_[binNo] += value; |
1384 |
} |
1385 |
if (outputVx_) { |
1386 |
value = mass * vel[0]; |
1387 |
//vxzCount_[binNo]++; |
1388 |
pxzHist_[binNo] += value; |
1389 |
} |
1390 |
if (outputVy_) { |
1391 |
value = mass * vel[1]; |
1392 |
//vyzCount_[binNo]++; |
1393 |
pyzHist_[binNo] += value; |
1394 |
} |
1395 |
|
1396 |
if (output3DTemp_) { |
1397 |
value = mass * vel.x() * vel.x(); |
1398 |
xTempHist_[binNo] += value; |
1399 |
value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert |
1400 |
/ PhysicalConstants::kb; |
1401 |
yTempHist_[binNo] += value; |
1402 |
value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert |
1403 |
/ PhysicalConstants::kb; |
1404 |
zTempHist_[binNo] += value; |
1405 |
xyzTempCount_[binNo]++; |
1406 |
} |
1407 |
if (outputRotTemp_) { |
1408 |
if (sd->isDirectional()) { |
1409 |
Vector3d angMom = sd->getJ(); |
1410 |
Mat3x3d I = sd->getI(); |
1411 |
if (sd->isLinear()) { |
1412 |
int i = sd->linearAxis(); |
1413 |
int j = (i + 1) % 3; |
1414 |
int k = (i + 2) % 3; |
1415 |
value = angMom[j] * angMom[j] / I(j, j) + |
1416 |
angMom[k] * angMom[k] / I(k, k); |
1417 |
rotTempCount_[binNo] +=2; |
1418 |
} else { |
1419 |
value = angMom[0] * angMom[0] / I(0, 0) + |
1420 |
angMom[1] * angMom[1] / I(1, 1) + |
1421 |
angMom[2] * angMom[2] / I(2, 2); |
1422 |
rotTempCount_[binNo] +=3; |
1423 |
} |
1424 |
} |
1425 |
value = value / PhysicalConstants::energyConvert |
1426 |
/ PhysicalConstants::kb;//may move to getStatus() |
1427 |
rotTempHist_[binNo] += value; |
1428 |
} |
1429 |
|
1430 |
} |
1431 |
} |
1432 |
|
1433 |
void RNEMD::getStarted() { |
1434 |
collectData(); |
1435 |
/*now can output profile in step 0, but might not be useful; |
1436 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1437 |
Stats& stat = currentSnap_->statData; |
1438 |
stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
1439 |
*/ |
1440 |
//may output a header for the log file here |
1441 |
getStatus(); |
1442 |
} |
1443 |
|
1444 |
void RNEMD::getStatus() { |
1445 |
|
1446 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1447 |
Stats& stat = currentSnap_->statData; |
1448 |
RealType time = currentSnap_->getTime(); |
1449 |
|
1450 |
stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
1451 |
//or to be more meaningful, define another item as exchangeSum_ / time |
1452 |
int j; |
1453 |
|
1454 |
#ifdef IS_MPI |
1455 |
|
1456 |
// all processors have the same number of bins, and STL vectors pack their |
1457 |
// arrays, so in theory, this should be safe: |
1458 |
|
1459 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0], |
1460 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1461 |
if (outputTemp_) { |
1462 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0], |
1463 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1464 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0], |
1465 |
rnemdLogWidth_, MPI::INT, MPI::SUM); |
1466 |
} |
1467 |
if (outputVx_) { |
1468 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0], |
1469 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1470 |
//MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0], |
1471 |
// rnemdLogWidth_, MPI::INT, MPI::SUM); |
1472 |
} |
1473 |
if (outputVy_) { |
1474 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0], |
1475 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1476 |
//MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0], |
1477 |
// rnemdLogWidth_, MPI::INT, MPI::SUM); |
1478 |
} |
1479 |
if (output3DTemp_) { |
1480 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0], |
1481 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1482 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0], |
1483 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1484 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0], |
1485 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1486 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0], |
1487 |
rnemdLogWidth_, MPI::INT, MPI::SUM); |
1488 |
} |
1489 |
if (outputRotTemp_) { |
1490 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0], |
1491 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1492 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0], |
1493 |
rnemdLogWidth_, MPI::INT, MPI::SUM); |
1494 |
} |
1495 |
|
1496 |
// If we're the root node, should we print out the results |
1497 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
1498 |
if (worldRank == 0) { |
1499 |
#endif |
1500 |
|
1501 |
if (outputTemp_) { |
1502 |
tempLog_ << time; |
1503 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1504 |
tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j]; |
1505 |
} |
1506 |
tempLog_ << endl; |
1507 |
} |
1508 |
if (outputVx_) { |
1509 |
vxzLog_ << time; |
1510 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1511 |
vxzLog_ << "\t" << pxzHist_[j] / mHist_[j]; |
1512 |
} |
1513 |
vxzLog_ << endl; |
1514 |
} |
1515 |
if (outputVy_) { |
1516 |
vyzLog_ << time; |
1517 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1518 |
vyzLog_ << "\t" << pyzHist_[j] / mHist_[j]; |
1519 |
} |
1520 |
vyzLog_ << endl; |
1521 |
} |
1522 |
|
1523 |
if (output3DTemp_) { |
1524 |
RealType temp; |
1525 |
xTempLog_ << time; |
1526 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1527 |
if (outputVx_) |
1528 |
xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j]; |
1529 |
temp = xTempHist_[j] / (RealType)xyzTempCount_[j] |
1530 |
/ PhysicalConstants::energyConvert / PhysicalConstants::kb; |
1531 |
xTempLog_ << "\t" << temp; |
1532 |
} |
1533 |
xTempLog_ << endl; |
1534 |
yTempLog_ << time; |
1535 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1536 |
yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j]; |
1537 |
} |
1538 |
yTempLog_ << endl; |
1539 |
zTempLog_ << time; |
1540 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1541 |
zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j]; |
1542 |
} |
1543 |
zTempLog_ << endl; |
1544 |
} |
1545 |
if (outputRotTemp_) { |
1546 |
rotTempLog_ << time; |
1547 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1548 |
rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j]; |
1549 |
} |
1550 |
rotTempLog_ << endl; |
1551 |
} |
1552 |
|
1553 |
#ifdef IS_MPI |
1554 |
} |
1555 |
#endif |
1556 |
|
1557 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1558 |
mHist_[j] = 0.0; |
1559 |
} |
1560 |
if (outputTemp_) |
1561 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1562 |
tempCount_[j] = 0; |
1563 |
tempHist_[j] = 0.0; |
1564 |
} |
1565 |
if (outputVx_) |
1566 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1567 |
//pxzCount_[j] = 0; |
1568 |
pxzHist_[j] = 0.0; |
1569 |
} |
1570 |
if (outputVy_) |
1571 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1572 |
//pyzCount_[j] = 0; |
1573 |
pyzHist_[j] = 0.0; |
1574 |
} |
1575 |
|
1576 |
if (output3DTemp_) |
1577 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1578 |
xTempHist_[j] = 0.0; |
1579 |
yTempHist_[j] = 0.0; |
1580 |
zTempHist_[j] = 0.0; |
1581 |
xyzTempCount_[j] = 0; |
1582 |
} |
1583 |
if (outputRotTemp_) |
1584 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1585 |
rotTempCount_[j] = 0; |
1586 |
rotTempHist_[j] = 0.0; |
1587 |
} |
1588 |
} |
1589 |
} |
1590 |
|