1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "integrators/RNEMD.hpp" |
44 |
#include "math/Vector3.hpp" |
45 |
#include "math/SquareMatrix3.hpp" |
46 |
#include "math/Polynomial.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "primitives/StuntDouble.hpp" |
49 |
#include "utils/PhysicalConstants.hpp" |
50 |
#include "utils/Tuple.hpp" |
51 |
|
52 |
#ifndef IS_MPI |
53 |
#include "math/SeqRandNumGen.hpp" |
54 |
#else |
55 |
#include <mpi.h> |
56 |
#include "math/ParallelRandNumGen.hpp" |
57 |
#endif |
58 |
|
59 |
#define HONKING_LARGE_VALUE 1.0e10 |
60 |
|
61 |
namespace OpenMD { |
62 |
|
63 |
RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { |
64 |
|
65 |
failTrialCount_ = 0; |
66 |
failRootCount_ = 0; |
67 |
|
68 |
int seedValue; |
69 |
Globals * simParams = info->getSimParams(); |
70 |
|
71 |
stringToEnumMap_["KineticSwap"] = rnemdKineticSwap; |
72 |
stringToEnumMap_["KineticScale"] = rnemdKineticScale; |
73 |
stringToEnumMap_["PxScale"] = rnemdPxScale; |
74 |
stringToEnumMap_["PyScale"] = rnemdPyScale; |
75 |
stringToEnumMap_["PzScale"] = rnemdPzScale; |
76 |
stringToEnumMap_["Px"] = rnemdPx; |
77 |
stringToEnumMap_["Py"] = rnemdPy; |
78 |
stringToEnumMap_["Pz"] = rnemdPz; |
79 |
stringToEnumMap_["Unknown"] = rnemdUnknown; |
80 |
|
81 |
rnemdObjectSelection_ = simParams->getRNEMD_objectSelection(); |
82 |
evaluator_.loadScriptString(rnemdObjectSelection_); |
83 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
84 |
|
85 |
// do some sanity checking |
86 |
|
87 |
int selectionCount = seleMan_.getSelectionCount(); |
88 |
int nIntegrable = info->getNGlobalIntegrableObjects(); |
89 |
|
90 |
if (selectionCount > nIntegrable) { |
91 |
sprintf(painCave.errMsg, |
92 |
"RNEMD warning: The current RNEMD_objectSelection,\n" |
93 |
"\t\t%s\n" |
94 |
"\thas resulted in %d selected objects. However,\n" |
95 |
"\tthe total number of integrable objects in the system\n" |
96 |
"\tis only %d. This is almost certainly not what you want\n" |
97 |
"\tto do. A likely cause of this is forgetting the _RB_0\n" |
98 |
"\tselector in the selection script!\n", |
99 |
rnemdObjectSelection_.c_str(), |
100 |
selectionCount, nIntegrable); |
101 |
painCave.isFatal = 0; |
102 |
simError(); |
103 |
|
104 |
} |
105 |
|
106 |
const std::string st = simParams->getRNEMD_exchangeType(); |
107 |
|
108 |
std::map<std::string, RNEMDTypeEnum>::iterator i; |
109 |
i = stringToEnumMap_.find(st); |
110 |
rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second; |
111 |
if (rnemdType_ == rnemdUnknown) { |
112 |
std::cerr << "WARNING! RNEMD Type Unknown!\n"; |
113 |
} |
114 |
|
115 |
#ifdef IS_MPI |
116 |
if (worldRank == 0) { |
117 |
#endif |
118 |
|
119 |
std::string rnemdFileName; |
120 |
std::string xTempFileName; |
121 |
std::string yTempFileName; |
122 |
std::string zTempFileName; |
123 |
switch(rnemdType_) { |
124 |
case rnemdKineticSwap : |
125 |
case rnemdKineticScale : |
126 |
rnemdFileName = "temperature.log"; |
127 |
break; |
128 |
case rnemdPx : |
129 |
case rnemdPxScale : |
130 |
case rnemdPy : |
131 |
case rnemdPyScale : |
132 |
rnemdFileName = "momemtum.log"; |
133 |
xTempFileName = "temperatureX.log"; |
134 |
yTempFileName = "temperatureY.log"; |
135 |
zTempFileName = "temperatureZ.log"; |
136 |
xTempLog_.open(xTempFileName.c_str()); |
137 |
yTempLog_.open(yTempFileName.c_str()); |
138 |
zTempLog_.open(zTempFileName.c_str()); |
139 |
break; |
140 |
case rnemdPz : |
141 |
case rnemdPzScale : |
142 |
case rnemdUnknown : |
143 |
default : |
144 |
rnemdFileName = "rnemd.log"; |
145 |
break; |
146 |
} |
147 |
rnemdLog_.open(rnemdFileName.c_str()); |
148 |
|
149 |
#ifdef IS_MPI |
150 |
} |
151 |
#endif |
152 |
|
153 |
set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime()); |
154 |
set_RNEMD_nBins(simParams->getRNEMD_nBins()); |
155 |
midBin_ = nBins_ / 2; |
156 |
if (simParams->haveRNEMD_logWidth()) { |
157 |
rnemdLogWidth_ = simParams->getRNEMD_logWidth(); |
158 |
if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) { |
159 |
std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n"; |
160 |
std::cerr << "Automaically set back to default.\n"; |
161 |
rnemdLogWidth_ = nBins_; |
162 |
} |
163 |
} else { |
164 |
rnemdLogWidth_ = nBins_; |
165 |
} |
166 |
valueHist_.resize(rnemdLogWidth_, 0.0); |
167 |
valueCount_.resize(rnemdLogWidth_, 0); |
168 |
xTempHist_.resize(rnemdLogWidth_, 0.0); |
169 |
yTempHist_.resize(rnemdLogWidth_, 0.0); |
170 |
zTempHist_.resize(rnemdLogWidth_, 0.0); |
171 |
|
172 |
set_RNEMD_exchange_total(0.0); |
173 |
if (simParams->haveRNEMD_targetFlux()) { |
174 |
set_RNEMD_target_flux(simParams->getRNEMD_targetFlux()); |
175 |
} else { |
176 |
set_RNEMD_target_flux(0.0); |
177 |
} |
178 |
|
179 |
#ifndef IS_MPI |
180 |
if (simParams->haveSeed()) { |
181 |
seedValue = simParams->getSeed(); |
182 |
randNumGen_ = new SeqRandNumGen(seedValue); |
183 |
}else { |
184 |
randNumGen_ = new SeqRandNumGen(); |
185 |
} |
186 |
#else |
187 |
if (simParams->haveSeed()) { |
188 |
seedValue = simParams->getSeed(); |
189 |
randNumGen_ = new ParallelRandNumGen(seedValue); |
190 |
}else { |
191 |
randNumGen_ = new ParallelRandNumGen(); |
192 |
} |
193 |
#endif |
194 |
} |
195 |
|
196 |
RNEMD::~RNEMD() { |
197 |
delete randNumGen_; |
198 |
|
199 |
#ifdef IS_MPI |
200 |
if (worldRank == 0) { |
201 |
#endif |
202 |
std::cerr << "total fail trials: " << failTrialCount_ << "\n"; |
203 |
rnemdLog_.close(); |
204 |
if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale) |
205 |
std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n"; |
206 |
if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) { |
207 |
xTempLog_.close(); |
208 |
yTempLog_.close(); |
209 |
zTempLog_.close(); |
210 |
} |
211 |
#ifdef IS_MPI |
212 |
} |
213 |
#endif |
214 |
} |
215 |
|
216 |
void RNEMD::doSwap() { |
217 |
|
218 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
219 |
Mat3x3d hmat = currentSnap_->getHmat(); |
220 |
|
221 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
222 |
|
223 |
int selei; |
224 |
StuntDouble* sd; |
225 |
int idx; |
226 |
|
227 |
RealType min_val; |
228 |
bool min_found = false; |
229 |
StuntDouble* min_sd; |
230 |
|
231 |
RealType max_val; |
232 |
bool max_found = false; |
233 |
StuntDouble* max_sd; |
234 |
|
235 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
236 |
sd = seleMan_.nextSelected(selei)) { |
237 |
|
238 |
idx = sd->getLocalIndex(); |
239 |
|
240 |
Vector3d pos = sd->getPos(); |
241 |
|
242 |
// wrap the stuntdouble's position back into the box: |
243 |
|
244 |
if (usePeriodicBoundaryConditions_) |
245 |
currentSnap_->wrapVector(pos); |
246 |
|
247 |
// which bin is this stuntdouble in? |
248 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
249 |
|
250 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
251 |
|
252 |
|
253 |
// if we're in bin 0 or the middleBin |
254 |
if (binNo == 0 || binNo == midBin_) { |
255 |
|
256 |
RealType mass = sd->getMass(); |
257 |
Vector3d vel = sd->getVel(); |
258 |
RealType value; |
259 |
|
260 |
switch(rnemdType_) { |
261 |
case rnemdKineticSwap : |
262 |
|
263 |
value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
264 |
vel[2]*vel[2]); |
265 |
if (sd->isDirectional()) { |
266 |
Vector3d angMom = sd->getJ(); |
267 |
Mat3x3d I = sd->getI(); |
268 |
|
269 |
if (sd->isLinear()) { |
270 |
int i = sd->linearAxis(); |
271 |
int j = (i + 1) % 3; |
272 |
int k = (i + 2) % 3; |
273 |
value += angMom[j] * angMom[j] / I(j, j) + |
274 |
angMom[k] * angMom[k] / I(k, k); |
275 |
} else { |
276 |
value += angMom[0]*angMom[0]/I(0, 0) |
277 |
+ angMom[1]*angMom[1]/I(1, 1) |
278 |
+ angMom[2]*angMom[2]/I(2, 2); |
279 |
} |
280 |
} |
281 |
//make exchangeSum_ comparable between swap & scale |
282 |
//temporarily without using energyConvert |
283 |
//value = value * 0.5 / PhysicalConstants::energyConvert; |
284 |
value *= 0.5; |
285 |
break; |
286 |
case rnemdPx : |
287 |
value = mass * vel[0]; |
288 |
break; |
289 |
case rnemdPy : |
290 |
value = mass * vel[1]; |
291 |
break; |
292 |
case rnemdPz : |
293 |
value = mass * vel[2]; |
294 |
break; |
295 |
default : |
296 |
break; |
297 |
} |
298 |
|
299 |
if (binNo == 0) { |
300 |
if (!min_found) { |
301 |
min_val = value; |
302 |
min_sd = sd; |
303 |
min_found = true; |
304 |
} else { |
305 |
if (min_val > value) { |
306 |
min_val = value; |
307 |
min_sd = sd; |
308 |
} |
309 |
} |
310 |
} else { //midBin_ |
311 |
if (!max_found) { |
312 |
max_val = value; |
313 |
max_sd = sd; |
314 |
max_found = true; |
315 |
} else { |
316 |
if (max_val < value) { |
317 |
max_val = value; |
318 |
max_sd = sd; |
319 |
} |
320 |
} |
321 |
} |
322 |
} |
323 |
} |
324 |
|
325 |
#ifdef IS_MPI |
326 |
int nProc, worldRank; |
327 |
|
328 |
nProc = MPI::COMM_WORLD.Get_size(); |
329 |
worldRank = MPI::COMM_WORLD.Get_rank(); |
330 |
|
331 |
bool my_min_found = min_found; |
332 |
bool my_max_found = max_found; |
333 |
|
334 |
// Even if we didn't find a minimum, did someone else? |
335 |
MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, |
336 |
1, MPI::BOOL, MPI::LAND); |
337 |
|
338 |
// Even if we didn't find a maximum, did someone else? |
339 |
MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, |
340 |
1, MPI::BOOL, MPI::LAND); |
341 |
|
342 |
struct { |
343 |
RealType val; |
344 |
int rank; |
345 |
} max_vals, min_vals; |
346 |
|
347 |
if (min_found) { |
348 |
if (my_min_found) |
349 |
min_vals.val = min_val; |
350 |
else |
351 |
min_vals.val = HONKING_LARGE_VALUE; |
352 |
|
353 |
min_vals.rank = worldRank; |
354 |
|
355 |
// Who had the minimum? |
356 |
MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, |
357 |
1, MPI::REALTYPE_INT, MPI::MINLOC); |
358 |
min_val = min_vals.val; |
359 |
} |
360 |
|
361 |
if (max_found) { |
362 |
if (my_max_found) |
363 |
max_vals.val = max_val; |
364 |
else |
365 |
max_vals.val = -HONKING_LARGE_VALUE; |
366 |
|
367 |
max_vals.rank = worldRank; |
368 |
|
369 |
// Who had the maximum? |
370 |
MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, |
371 |
1, MPI::REALTYPE_INT, MPI::MAXLOC); |
372 |
max_val = max_vals.val; |
373 |
} |
374 |
#endif |
375 |
|
376 |
if (max_found && min_found) { |
377 |
if (min_val< max_val) { |
378 |
|
379 |
#ifdef IS_MPI |
380 |
if (max_vals.rank == worldRank && min_vals.rank == worldRank) { |
381 |
// I have both maximum and minimum, so proceed like a single |
382 |
// processor version: |
383 |
#endif |
384 |
// objects to be swapped: velocity & angular velocity |
385 |
Vector3d min_vel = min_sd->getVel(); |
386 |
Vector3d max_vel = max_sd->getVel(); |
387 |
RealType temp_vel; |
388 |
|
389 |
switch(rnemdType_) { |
390 |
case rnemdKineticSwap : |
391 |
min_sd->setVel(max_vel); |
392 |
max_sd->setVel(min_vel); |
393 |
if (min_sd->isDirectional() && max_sd->isDirectional()) { |
394 |
Vector3d min_angMom = min_sd->getJ(); |
395 |
Vector3d max_angMom = max_sd->getJ(); |
396 |
min_sd->setJ(max_angMom); |
397 |
max_sd->setJ(min_angMom); |
398 |
} |
399 |
break; |
400 |
case rnemdPx : |
401 |
temp_vel = min_vel.x(); |
402 |
min_vel.x() = max_vel.x(); |
403 |
max_vel.x() = temp_vel; |
404 |
min_sd->setVel(min_vel); |
405 |
max_sd->setVel(max_vel); |
406 |
break; |
407 |
case rnemdPy : |
408 |
temp_vel = min_vel.y(); |
409 |
min_vel.y() = max_vel.y(); |
410 |
max_vel.y() = temp_vel; |
411 |
min_sd->setVel(min_vel); |
412 |
max_sd->setVel(max_vel); |
413 |
break; |
414 |
case rnemdPz : |
415 |
temp_vel = min_vel.z(); |
416 |
min_vel.z() = max_vel.z(); |
417 |
max_vel.z() = temp_vel; |
418 |
min_sd->setVel(min_vel); |
419 |
max_sd->setVel(max_vel); |
420 |
break; |
421 |
default : |
422 |
break; |
423 |
} |
424 |
#ifdef IS_MPI |
425 |
// the rest of the cases only apply in parallel simulations: |
426 |
} else if (max_vals.rank == worldRank) { |
427 |
// I had the max, but not the minimum |
428 |
|
429 |
Vector3d min_vel; |
430 |
Vector3d max_vel = max_sd->getVel(); |
431 |
MPI::Status status; |
432 |
|
433 |
// point-to-point swap of the velocity vector |
434 |
MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
435 |
min_vals.rank, 0, |
436 |
min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
437 |
min_vals.rank, 0, status); |
438 |
|
439 |
switch(rnemdType_) { |
440 |
case rnemdKineticSwap : |
441 |
max_sd->setVel(min_vel); |
442 |
|
443 |
if (max_sd->isDirectional()) { |
444 |
Vector3d min_angMom; |
445 |
Vector3d max_angMom = max_sd->getJ(); |
446 |
|
447 |
// point-to-point swap of the angular momentum vector |
448 |
MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, |
449 |
MPI::REALTYPE, min_vals.rank, 1, |
450 |
min_angMom.getArrayPointer(), 3, |
451 |
MPI::REALTYPE, min_vals.rank, 1, |
452 |
status); |
453 |
|
454 |
max_sd->setJ(min_angMom); |
455 |
} |
456 |
break; |
457 |
case rnemdPx : |
458 |
max_vel.x() = min_vel.x(); |
459 |
max_sd->setVel(max_vel); |
460 |
break; |
461 |
case rnemdPy : |
462 |
max_vel.y() = min_vel.y(); |
463 |
max_sd->setVel(max_vel); |
464 |
break; |
465 |
case rnemdPz : |
466 |
max_vel.z() = min_vel.z(); |
467 |
max_sd->setVel(max_vel); |
468 |
break; |
469 |
default : |
470 |
break; |
471 |
} |
472 |
} else if (min_vals.rank == worldRank) { |
473 |
// I had the minimum but not the maximum: |
474 |
|
475 |
Vector3d max_vel; |
476 |
Vector3d min_vel = min_sd->getVel(); |
477 |
MPI::Status status; |
478 |
|
479 |
// point-to-point swap of the velocity vector |
480 |
MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, |
481 |
max_vals.rank, 0, |
482 |
max_vel.getArrayPointer(), 3, MPI::REALTYPE, |
483 |
max_vals.rank, 0, status); |
484 |
|
485 |
switch(rnemdType_) { |
486 |
case rnemdKineticSwap : |
487 |
min_sd->setVel(max_vel); |
488 |
|
489 |
if (min_sd->isDirectional()) { |
490 |
Vector3d min_angMom = min_sd->getJ(); |
491 |
Vector3d max_angMom; |
492 |
|
493 |
// point-to-point swap of the angular momentum vector |
494 |
MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, |
495 |
MPI::REALTYPE, max_vals.rank, 1, |
496 |
max_angMom.getArrayPointer(), 3, |
497 |
MPI::REALTYPE, max_vals.rank, 1, |
498 |
status); |
499 |
|
500 |
min_sd->setJ(max_angMom); |
501 |
} |
502 |
break; |
503 |
case rnemdPx : |
504 |
min_vel.x() = max_vel.x(); |
505 |
min_sd->setVel(min_vel); |
506 |
break; |
507 |
case rnemdPy : |
508 |
min_vel.y() = max_vel.y(); |
509 |
min_sd->setVel(min_vel); |
510 |
break; |
511 |
case rnemdPz : |
512 |
min_vel.z() = max_vel.z(); |
513 |
min_sd->setVel(min_vel); |
514 |
break; |
515 |
default : |
516 |
break; |
517 |
} |
518 |
} |
519 |
#endif |
520 |
exchangeSum_ += max_val - min_val; |
521 |
} else { |
522 |
std::cerr << "exchange NOT performed!\nmin_val > max_val.\n"; |
523 |
failTrialCount_++; |
524 |
} |
525 |
} else { |
526 |
std::cerr << "exchange NOT performed!\n"; |
527 |
std::cerr << "at least one of the two slabs empty.\n"; |
528 |
failTrialCount_++; |
529 |
} |
530 |
|
531 |
} |
532 |
|
533 |
void RNEMD::doScale() { |
534 |
|
535 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
536 |
Mat3x3d hmat = currentSnap_->getHmat(); |
537 |
|
538 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
539 |
|
540 |
int selei; |
541 |
StuntDouble* sd; |
542 |
int idx; |
543 |
|
544 |
std::vector<StuntDouble*> hotBin, coldBin; |
545 |
|
546 |
RealType Phx = 0.0; |
547 |
RealType Phy = 0.0; |
548 |
RealType Phz = 0.0; |
549 |
RealType Khx = 0.0; |
550 |
RealType Khy = 0.0; |
551 |
RealType Khz = 0.0; |
552 |
RealType Pcx = 0.0; |
553 |
RealType Pcy = 0.0; |
554 |
RealType Pcz = 0.0; |
555 |
RealType Kcx = 0.0; |
556 |
RealType Kcy = 0.0; |
557 |
RealType Kcz = 0.0; |
558 |
|
559 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
560 |
sd = seleMan_.nextSelected(selei)) { |
561 |
|
562 |
idx = sd->getLocalIndex(); |
563 |
|
564 |
Vector3d pos = sd->getPos(); |
565 |
|
566 |
// wrap the stuntdouble's position back into the box: |
567 |
|
568 |
if (usePeriodicBoundaryConditions_) |
569 |
currentSnap_->wrapVector(pos); |
570 |
|
571 |
// which bin is this stuntdouble in? |
572 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
573 |
|
574 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
575 |
|
576 |
// if we're in bin 0 or the middleBin |
577 |
if (binNo == 0 || binNo == midBin_) { |
578 |
|
579 |
RealType mass = sd->getMass(); |
580 |
Vector3d vel = sd->getVel(); |
581 |
|
582 |
if (binNo == 0) { |
583 |
hotBin.push_back(sd); |
584 |
Phx += mass * vel.x(); |
585 |
Phy += mass * vel.y(); |
586 |
Phz += mass * vel.z(); |
587 |
Khx += mass * vel.x() * vel.x(); |
588 |
Khy += mass * vel.y() * vel.y(); |
589 |
Khz += mass * vel.z() * vel.z(); |
590 |
} else { //midBin_ |
591 |
coldBin.push_back(sd); |
592 |
Pcx += mass * vel.x(); |
593 |
Pcy += mass * vel.y(); |
594 |
Pcz += mass * vel.z(); |
595 |
Kcx += mass * vel.x() * vel.x(); |
596 |
Kcy += mass * vel.y() * vel.y(); |
597 |
Kcz += mass * vel.z() * vel.z(); |
598 |
} |
599 |
} |
600 |
} |
601 |
|
602 |
Khx *= 0.5; |
603 |
Khy *= 0.5; |
604 |
Khz *= 0.5; |
605 |
Kcx *= 0.5; |
606 |
Kcy *= 0.5; |
607 |
Kcz *= 0.5; |
608 |
|
609 |
#ifdef IS_MPI |
610 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); |
611 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); |
612 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); |
613 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); |
614 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); |
615 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); |
616 |
|
617 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); |
618 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); |
619 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); |
620 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); |
621 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); |
622 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); |
623 |
#endif |
624 |
|
625 |
//use coldBin coeff's |
626 |
RealType px = Pcx / Phx; |
627 |
RealType py = Pcy / Phy; |
628 |
RealType pz = Pcz / Phz; |
629 |
|
630 |
RealType a000, a110, c0, a001, a111, b01, b11, c1, c; |
631 |
switch(rnemdType_) { |
632 |
case rnemdKineticScale : |
633 |
/*used hotBin coeff's & only scale x & y dimensions |
634 |
RealType px = Phx / Pcx; |
635 |
RealType py = Phy / Pcy; |
636 |
a110 = Khy; |
637 |
c0 = - Khx - Khy - targetFlux_; |
638 |
a000 = Khx; |
639 |
a111 = Kcy * py * py |
640 |
b11 = -2.0 * Kcy * py * (1.0 + py); |
641 |
c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_; |
642 |
b01 = -2.0 * Kcx * px * (1.0 + px); |
643 |
a001 = Kcx * px * px; |
644 |
*/ |
645 |
|
646 |
//scale all three dimensions, let c_x = c_y |
647 |
a000 = Kcx + Kcy; |
648 |
a110 = Kcz; |
649 |
c0 = targetFlux_ - Kcx - Kcy - Kcz; |
650 |
a001 = Khx * px * px + Khy * py * py; |
651 |
a111 = Khz * pz * pz; |
652 |
b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); |
653 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
654 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
655 |
+ Khz * pz * (2.0 + pz) - targetFlux_; |
656 |
break; |
657 |
case rnemdPxScale : |
658 |
c = 1 - targetFlux_ / Pcx; |
659 |
a000 = Kcy; |
660 |
a110 = Kcz; |
661 |
c0 = Kcx * c * c - Kcx - Kcy - Kcz; |
662 |
a001 = py * py * Khy; |
663 |
a111 = pz * pz * Khz; |
664 |
b01 = -2.0 * Khy * py * (1.0 + py); |
665 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
666 |
c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) |
667 |
+ Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); |
668 |
break; |
669 |
case rnemdPyScale : |
670 |
c = 1 - targetFlux_ / Pcy; |
671 |
a000 = Kcx; |
672 |
a110 = Kcz; |
673 |
c0 = Kcy * c * c - Kcx - Kcy - Kcz; |
674 |
a001 = px * px * Khx; |
675 |
a111 = pz * pz * Khz; |
676 |
b01 = -2.0 * Khx * px * (1.0 + px); |
677 |
b11 = -2.0 * Khz * pz * (1.0 + pz); |
678 |
c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) |
679 |
+ Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); |
680 |
break; |
681 |
case rnemdPzScale ://we don't really do this, do we? |
682 |
c = 1 - targetFlux_ / Pcz; |
683 |
a000 = Kcx; |
684 |
a110 = Kcy; |
685 |
c0 = Kcz * c * c - Kcx - Kcy - Kcz; |
686 |
a001 = px * px * Khx; |
687 |
a111 = py * py * Khy; |
688 |
b01 = -2.0 * Khx * px * (1.0 + px); |
689 |
b11 = -2.0 * Khy * py * (1.0 + py); |
690 |
c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) |
691 |
+ Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); |
692 |
break; |
693 |
default : |
694 |
break; |
695 |
} |
696 |
|
697 |
RealType v1 = a000 * a111 - a001 * a110; |
698 |
RealType v2 = a000 * b01; |
699 |
RealType v3 = a000 * b11; |
700 |
RealType v4 = a000 * c1 - a001 * c0; |
701 |
RealType v8 = a110 * b01; |
702 |
RealType v10 = - b01 * c0; |
703 |
|
704 |
RealType u0 = v2 * v10 - v4 * v4; |
705 |
RealType u1 = -2.0 * v3 * v4; |
706 |
RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; |
707 |
RealType u3 = -2.0 * v1 * v3; |
708 |
RealType u4 = - v1 * v1; |
709 |
//rescale coefficients |
710 |
RealType maxAbs = fabs(u0); |
711 |
if (maxAbs < fabs(u1)) maxAbs = fabs(u1); |
712 |
if (maxAbs < fabs(u2)) maxAbs = fabs(u2); |
713 |
if (maxAbs < fabs(u3)) maxAbs = fabs(u3); |
714 |
if (maxAbs < fabs(u4)) maxAbs = fabs(u4); |
715 |
u0 /= maxAbs; |
716 |
u1 /= maxAbs; |
717 |
u2 /= maxAbs; |
718 |
u3 /= maxAbs; |
719 |
u4 /= maxAbs; |
720 |
//max_element(start, end) is also available. |
721 |
Polynomial<RealType> poly; //same as DoublePolynomial poly; |
722 |
poly.setCoefficient(4, u4); |
723 |
poly.setCoefficient(3, u3); |
724 |
poly.setCoefficient(2, u2); |
725 |
poly.setCoefficient(1, u1); |
726 |
poly.setCoefficient(0, u0); |
727 |
std::vector<RealType> realRoots = poly.FindRealRoots(); |
728 |
|
729 |
std::vector<RealType>::iterator ri; |
730 |
RealType r1, r2, alpha0; |
731 |
std::vector<std::pair<RealType,RealType> > rps; |
732 |
for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { |
733 |
r2 = *ri; |
734 |
//check if FindRealRoots() give the right answer |
735 |
if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { |
736 |
sprintf(painCave.errMsg, |
737 |
"RNEMD Warning: polynomial solve seems to have an error!"); |
738 |
painCave.isFatal = 0; |
739 |
simError(); |
740 |
failRootCount_++; |
741 |
} |
742 |
//might not be useful w/o rescaling coefficients |
743 |
alpha0 = -c0 - a110 * r2 * r2; |
744 |
if (alpha0 >= 0.0) { |
745 |
r1 = sqrt(alpha0 / a000); |
746 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6) |
747 |
{ rps.push_back(std::make_pair(r1, r2)); } |
748 |
if (r1 > 1e-6) { //r1 non-negative |
749 |
r1 = -r1; |
750 |
if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6) |
751 |
{ rps.push_back(std::make_pair(r1, r2)); } |
752 |
} |
753 |
} |
754 |
} |
755 |
// Consider combininig together the solving pair part w/ the searching |
756 |
// best solution part so that we don't need the pairs vector |
757 |
if (!rps.empty()) { |
758 |
RealType smallestDiff = HONKING_LARGE_VALUE; |
759 |
RealType diff; |
760 |
std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0); |
761 |
std::vector<std::pair<RealType,RealType> >::iterator rpi; |
762 |
for (rpi = rps.begin(); rpi != rps.end(); rpi++) { |
763 |
r1 = (*rpi).first; |
764 |
r2 = (*rpi).second; |
765 |
switch(rnemdType_) { |
766 |
case rnemdKineticScale : |
767 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
768 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) |
769 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
770 |
break; |
771 |
case rnemdPxScale : |
772 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
773 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); |
774 |
break; |
775 |
case rnemdPyScale : |
776 |
diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) |
777 |
+ fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); |
778 |
break; |
779 |
case rnemdPzScale : |
780 |
default : |
781 |
break; |
782 |
} |
783 |
if (diff < smallestDiff) { |
784 |
smallestDiff = diff; |
785 |
bestPair = *rpi; |
786 |
} |
787 |
} |
788 |
#ifdef IS_MPI |
789 |
if (worldRank == 0) { |
790 |
#endif |
791 |
std::cerr << "we choose r1 = " << bestPair.first |
792 |
<< " and r2 = " << bestPair.second << "\n"; |
793 |
#ifdef IS_MPI |
794 |
} |
795 |
#endif |
796 |
|
797 |
RealType x, y, z; |
798 |
switch(rnemdType_) { |
799 |
case rnemdKineticScale : |
800 |
x = bestPair.first; |
801 |
y = bestPair.first; |
802 |
z = bestPair.second; |
803 |
break; |
804 |
case rnemdPxScale : |
805 |
x = c; |
806 |
y = bestPair.first; |
807 |
z = bestPair.second; |
808 |
break; |
809 |
case rnemdPyScale : |
810 |
x = bestPair.first; |
811 |
y = c; |
812 |
z = bestPair.second; |
813 |
break; |
814 |
case rnemdPzScale : |
815 |
x = bestPair.first; |
816 |
y = bestPair.second; |
817 |
z = c; |
818 |
break; |
819 |
default : |
820 |
break; |
821 |
} |
822 |
std::vector<StuntDouble*>::iterator sdi; |
823 |
Vector3d vel; |
824 |
for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { |
825 |
vel = (*sdi)->getVel(); |
826 |
vel.x() *= x; |
827 |
vel.y() *= y; |
828 |
vel.z() *= z; |
829 |
(*sdi)->setVel(vel); |
830 |
} |
831 |
//convert to hotBin coefficient |
832 |
x = 1.0 + px * (1.0 - x); |
833 |
y = 1.0 + py * (1.0 - y); |
834 |
z = 1.0 + pz * (1.0 - z); |
835 |
for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { |
836 |
vel = (*sdi)->getVel(); |
837 |
vel.x() *= x; |
838 |
vel.y() *= y; |
839 |
vel.z() *= z; |
840 |
(*sdi)->setVel(vel); |
841 |
} |
842 |
exchangeSum_ += targetFlux_; |
843 |
//we may want to check whether the exchange has been successful |
844 |
} else { |
845 |
std::cerr << "exchange NOT performed!\n";//MPI incompatible |
846 |
failTrialCount_++; |
847 |
} |
848 |
|
849 |
} |
850 |
|
851 |
void RNEMD::doRNEMD() { |
852 |
|
853 |
switch(rnemdType_) { |
854 |
case rnemdKineticScale : |
855 |
case rnemdPxScale : |
856 |
case rnemdPyScale : |
857 |
case rnemdPzScale : |
858 |
doScale(); |
859 |
break; |
860 |
case rnemdKineticSwap : |
861 |
case rnemdPx : |
862 |
case rnemdPy : |
863 |
case rnemdPz : |
864 |
doSwap(); |
865 |
break; |
866 |
case rnemdUnknown : |
867 |
default : |
868 |
break; |
869 |
} |
870 |
} |
871 |
|
872 |
void RNEMD::collectData() { |
873 |
|
874 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
875 |
Mat3x3d hmat = currentSnap_->getHmat(); |
876 |
|
877 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
878 |
|
879 |
int selei; |
880 |
StuntDouble* sd; |
881 |
int idx; |
882 |
|
883 |
for (sd = seleMan_.beginSelected(selei); sd != NULL; |
884 |
sd = seleMan_.nextSelected(selei)) { |
885 |
|
886 |
idx = sd->getLocalIndex(); |
887 |
|
888 |
Vector3d pos = sd->getPos(); |
889 |
|
890 |
// wrap the stuntdouble's position back into the box: |
891 |
|
892 |
if (usePeriodicBoundaryConditions_) |
893 |
currentSnap_->wrapVector(pos); |
894 |
|
895 |
// which bin is this stuntdouble in? |
896 |
// wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] |
897 |
|
898 |
int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; |
899 |
|
900 |
if (rnemdLogWidth_ == midBin_ + 1) |
901 |
if (binNo > midBin_) |
902 |
binNo = nBins_ - binNo; |
903 |
|
904 |
RealType mass = sd->getMass(); |
905 |
Vector3d vel = sd->getVel(); |
906 |
RealType value; |
907 |
RealType xVal, yVal, zVal; |
908 |
|
909 |
switch(rnemdType_) { |
910 |
case rnemdKineticSwap : |
911 |
case rnemdKineticScale : |
912 |
|
913 |
value = mass * (vel[0]*vel[0] + vel[1]*vel[1] + |
914 |
vel[2]*vel[2]); |
915 |
|
916 |
valueCount_[binNo] += 3; |
917 |
if (sd->isDirectional()) { |
918 |
Vector3d angMom = sd->getJ(); |
919 |
Mat3x3d I = sd->getI(); |
920 |
|
921 |
if (sd->isLinear()) { |
922 |
int i = sd->linearAxis(); |
923 |
int j = (i + 1) % 3; |
924 |
int k = (i + 2) % 3; |
925 |
value += angMom[j] * angMom[j] / I(j, j) + |
926 |
angMom[k] * angMom[k] / I(k, k); |
927 |
|
928 |
valueCount_[binNo] +=2; |
929 |
|
930 |
} else { |
931 |
value += angMom[0]*angMom[0]/I(0, 0) |
932 |
+ angMom[1]*angMom[1]/I(1, 1) |
933 |
+ angMom[2]*angMom[2]/I(2, 2); |
934 |
valueCount_[binNo] +=3; |
935 |
} |
936 |
} |
937 |
value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb; |
938 |
|
939 |
break; |
940 |
case rnemdPx : |
941 |
case rnemdPxScale : |
942 |
value = mass * vel[0]; |
943 |
valueCount_[binNo]++; |
944 |
xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert |
945 |
/ PhysicalConstants::kb; |
946 |
yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert |
947 |
/ PhysicalConstants::kb; |
948 |
zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert |
949 |
/ PhysicalConstants::kb; |
950 |
xTempHist_[binNo] += xVal; |
951 |
yTempHist_[binNo] += yVal; |
952 |
zTempHist_[binNo] += zVal; |
953 |
break; |
954 |
case rnemdPy : |
955 |
case rnemdPyScale : |
956 |
value = mass * vel[1]; |
957 |
valueCount_[binNo]++; |
958 |
break; |
959 |
case rnemdPz : |
960 |
case rnemdPzScale : |
961 |
value = mass * vel[2]; |
962 |
valueCount_[binNo]++; |
963 |
break; |
964 |
case rnemdUnknown : |
965 |
default : |
966 |
break; |
967 |
} |
968 |
valueHist_[binNo] += value; |
969 |
} |
970 |
|
971 |
} |
972 |
|
973 |
void RNEMD::getStarted() { |
974 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
975 |
Stats& stat = currentSnap_->statData; |
976 |
stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
977 |
} |
978 |
|
979 |
void RNEMD::getStatus() { |
980 |
|
981 |
Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
982 |
Stats& stat = currentSnap_->statData; |
983 |
RealType time = currentSnap_->getTime(); |
984 |
|
985 |
stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_; |
986 |
//or to be more meaningful, define another item as exchangeSum_ / time |
987 |
int j; |
988 |
|
989 |
#ifdef IS_MPI |
990 |
|
991 |
// all processors have the same number of bins, and STL vectors pack their |
992 |
// arrays, so in theory, this should be safe: |
993 |
|
994 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0], |
995 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
996 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0], |
997 |
rnemdLogWidth_, MPI::INT, MPI::SUM); |
998 |
if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) { |
999 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0], |
1000 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1001 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0], |
1002 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1003 |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0], |
1004 |
rnemdLogWidth_, MPI::REALTYPE, MPI::SUM); |
1005 |
} |
1006 |
// If we're the root node, should we print out the results |
1007 |
int worldRank = MPI::COMM_WORLD.Get_rank(); |
1008 |
if (worldRank == 0) { |
1009 |
#endif |
1010 |
rnemdLog_ << time; |
1011 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1012 |
rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j]; |
1013 |
} |
1014 |
rnemdLog_ << "\n"; |
1015 |
if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) { |
1016 |
xTempLog_ << time; |
1017 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1018 |
xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j]; |
1019 |
} |
1020 |
xTempLog_ << "\n"; |
1021 |
yTempLog_ << time; |
1022 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1023 |
yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j]; |
1024 |
} |
1025 |
yTempLog_ << "\n"; |
1026 |
zTempLog_ << time; |
1027 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1028 |
zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j]; |
1029 |
} |
1030 |
zTempLog_ << "\n"; |
1031 |
} |
1032 |
#ifdef IS_MPI |
1033 |
} |
1034 |
#endif |
1035 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1036 |
valueCount_[j] = 0; |
1037 |
valueHist_[j] = 0.0; |
1038 |
} |
1039 |
if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale) |
1040 |
for (j = 0; j < rnemdLogWidth_; j++) { |
1041 |
xTempHist_[j] = 0.0; |
1042 |
yTempHist_[j] = 0.0; |
1043 |
zTempHist_[j] = 0.0; |
1044 |
} |
1045 |
} |
1046 |
} |