ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/RNEMD.cpp
Revision: 1723
Committed: Thu May 24 20:59:54 2012 UTC (12 years, 11 months ago) by gezelter
File size: 49500 byte(s)
Log Message:
Bug fixes for heat flux import

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1722 * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1722 #include "math/Vector.hpp"
46 gezelter 1329 #include "math/SquareMatrix3.hpp"
47 skuang 1368 #include "math/Polynomial.hpp"
48 gezelter 1329 #include "primitives/Molecule.hpp"
49     #include "primitives/StuntDouble.hpp"
50 gezelter 1390 #include "utils/PhysicalConstants.hpp"
51 gezelter 1332 #include "utils/Tuple.hpp"
52 gezelter 1329
53     #ifndef IS_MPI
54     #include "math/SeqRandNumGen.hpp"
55     #else
56     #include "math/ParallelRandNumGen.hpp"
57 gezelter 1723 #include <mpi.h>
58 gezelter 1329 #endif
59    
60 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
61 gezelter 1329
62 gezelter 1629 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 1329
65 gezelter 1629 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info),
66     usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
67 skuang 1368
68     failTrialCount_ = 0;
69     failRootCount_ = 0;
70    
71 gezelter 1329 int seedValue;
72     Globals * simParams = info->getSimParams();
73 skuang 1330
74 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
75     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
76 gezelter 1722 stringToEnumMap_["KineticScaleVAM"] = rnemdKineticScaleVAM;
77     stringToEnumMap_["KineticScaleAM"] = rnemdKineticScaleAM;
78 skuang 1368 stringToEnumMap_["PxScale"] = rnemdPxScale;
79     stringToEnumMap_["PyScale"] = rnemdPyScale;
80     stringToEnumMap_["PzScale"] = rnemdPzScale;
81 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
82     stringToEnumMap_["Py"] = rnemdPy;
83     stringToEnumMap_["Pz"] = rnemdPz;
84 gezelter 1722 stringToEnumMap_["ShiftScaleV"] = rnemdShiftScaleV;
85     stringToEnumMap_["ShiftScaleVAM"] = rnemdShiftScaleVAM;
86 skuang 1330 stringToEnumMap_["Unknown"] = rnemdUnknown;
87    
88 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
89 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
90     seleMan_.setSelectionSet(evaluator_.evaluate());
91 gezelter 1331
92 skuang 1341 // do some sanity checking
93    
94     int selectionCount = seleMan_.getSelectionCount();
95     int nIntegrable = info->getNGlobalIntegrableObjects();
96    
97     if (selectionCount > nIntegrable) {
98     sprintf(painCave.errMsg,
99 gezelter 1629 "RNEMD: The current RNEMD_objectSelection,\n"
100 skuang 1341 "\t\t%s\n"
101     "\thas resulted in %d selected objects. However,\n"
102     "\tthe total number of integrable objects in the system\n"
103     "\tis only %d. This is almost certainly not what you want\n"
104     "\tto do. A likely cause of this is forgetting the _RB_0\n"
105     "\tselector in the selection script!\n",
106     rnemdObjectSelection_.c_str(),
107     selectionCount, nIntegrable);
108     painCave.isFatal = 0;
109 gezelter 1629 painCave.severity = OPENMD_WARNING;
110 skuang 1341 simError();
111     }
112 gezelter 1331
113 gezelter 1629 const string st = simParams->getRNEMD_exchangeType();
114 skuang 1330
115 gezelter 1629 map<string, RNEMDTypeEnum>::iterator i;
116 skuang 1330 i = stringToEnumMap_.find(st);
117 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
118     if (rnemdType_ == rnemdUnknown) {
119 gezelter 1629 sprintf(painCave.errMsg,
120     "RNEMD: The current RNEMD_exchangeType,\n"
121     "\t\t%s\n"
122     "\tis not one of the recognized exchange types.\n",
123     st.c_str());
124     painCave.isFatal = 1;
125     painCave.severity = OPENMD_ERROR;
126     simError();
127 skuang 1368 }
128 gezelter 1629
129 gezelter 1722 outputTemp_ = false;
130     if (simParams->haveRNEMD_outputTemperature()) {
131     outputTemp_ = simParams->getRNEMD_outputTemperature();
132     } else if ((rnemdType_ == rnemdKineticSwap) ||
133     (rnemdType_ == rnemdKineticScale) ||
134     (rnemdType_ == rnemdKineticScaleVAM) ||
135     (rnemdType_ == rnemdKineticScaleAM)) {
136     outputTemp_ = true;
137     }
138     outputVx_ = false;
139     if (simParams->haveRNEMD_outputVx()) {
140     outputVx_ = simParams->getRNEMD_outputVx();
141     } else if ((rnemdType_ == rnemdPx) || (rnemdType_ == rnemdPxScale)) {
142     outputVx_ = true;
143     }
144     outputVy_ = false;
145     if (simParams->haveRNEMD_outputVy()) {
146     outputVy_ = simParams->getRNEMD_outputVy();
147     } else if ((rnemdType_ == rnemdPy) || (rnemdType_ == rnemdPyScale)) {
148     outputVy_ = true;
149     }
150 gezelter 1629 output3DTemp_ = false;
151 gezelter 1722 if (simParams->haveRNEMD_outputXyzTemperature()) {
152     output3DTemp_ = simParams->getRNEMD_outputXyzTemperature();
153 gezelter 1629 }
154 gezelter 1722 outputRotTemp_ = false;
155     if (simParams->haveRNEMD_outputRotTemperature()) {
156     outputRotTemp_ = simParams->getRNEMD_outputRotTemperature();
157     }
158 skuang 1330
159 skuang 1368 #ifdef IS_MPI
160     if (worldRank == 0) {
161     #endif
162    
163 gezelter 1722 //may have rnemdWriter separately
164 gezelter 1629 string rnemdFileName;
165 gezelter 1722
166     if (outputTemp_) {
167 skuang 1368 rnemdFileName = "temperature.log";
168 gezelter 1722 tempLog_.open(rnemdFileName.c_str());
169 skuang 1368 }
170 gezelter 1722 if (outputVx_) {
171     rnemdFileName = "velocityX.log";
172     vxzLog_.open(rnemdFileName.c_str());
173     }
174     if (outputVy_) {
175     rnemdFileName = "velocityY.log";
176     vyzLog_.open(rnemdFileName.c_str());
177     }
178 skuang 1368
179 gezelter 1629 if (output3DTemp_) {
180 gezelter 1722 rnemdFileName = "temperatureX.log";
181     xTempLog_.open(rnemdFileName.c_str());
182     rnemdFileName = "temperatureY.log";
183     yTempLog_.open(rnemdFileName.c_str());
184     rnemdFileName = "temperatureZ.log";
185     zTempLog_.open(rnemdFileName.c_str());
186 gezelter 1629 }
187 gezelter 1722 if (outputRotTemp_) {
188     rnemdFileName = "temperatureR.log";
189     rotTempLog_.open(rnemdFileName.c_str());
190     }
191 gezelter 1629
192 skuang 1368 #ifdef IS_MPI
193     }
194     #endif
195    
196     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
197 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
198 skuang 1368 midBin_ = nBins_ / 2;
199 gezelter 1629 if (simParams->haveRNEMD_binShift()) {
200     if (simParams->getRNEMD_binShift()) {
201     zShift_ = 0.5 / (RealType)(nBins_);
202     } else {
203     zShift_ = 0.0;
204     }
205     } else {
206     zShift_ = 0.0;
207     }
208 gezelter 1722 //cerr << "I shift slabs by " << zShift_ << " Lz\n";
209     //shift slabs by half slab width, maybe useful in heterogeneous systems
210     //set to 0.0 if not using it; N/A in status output yet
211 skuang 1368 if (simParams->haveRNEMD_logWidth()) {
212 gezelter 1629 set_RNEMD_logWidth(simParams->getRNEMD_logWidth());
213 gezelter 1722 /*arbitary rnemdLogWidth_, no checking;
214     if (rnemdLogWidth_ != nBins_ && rnemdLogWidth_ != midBin_ + 1) {
215 gezelter 1629 cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
216     cerr << "Automaically set back to default.\n";
217 skuang 1368 rnemdLogWidth_ = nBins_;
218 gezelter 1722 }*/
219 skuang 1368 } else {
220 gezelter 1629 set_RNEMD_logWidth(nBins_);
221 skuang 1368 }
222 gezelter 1722 tempHist_.resize(rnemdLogWidth_, 0.0);
223     tempCount_.resize(rnemdLogWidth_, 0);
224     pxzHist_.resize(rnemdLogWidth_, 0.0);
225     //vxzCount_.resize(rnemdLogWidth_, 0);
226     pyzHist_.resize(rnemdLogWidth_, 0.0);
227     //vyzCount_.resize(rnemdLogWidth_, 0);
228    
229     mHist_.resize(rnemdLogWidth_, 0.0);
230 skuang 1368 xTempHist_.resize(rnemdLogWidth_, 0.0);
231     yTempHist_.resize(rnemdLogWidth_, 0.0);
232     zTempHist_.resize(rnemdLogWidth_, 0.0);
233 gezelter 1629 xyzTempCount_.resize(rnemdLogWidth_, 0);
234 gezelter 1722 rotTempHist_.resize(rnemdLogWidth_, 0.0);
235     rotTempCount_.resize(rnemdLogWidth_, 0);
236 skuang 1338
237 skuang 1368 set_RNEMD_exchange_total(0.0);
238     if (simParams->haveRNEMD_targetFlux()) {
239     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
240     } else {
241     set_RNEMD_target_flux(0.0);
242     }
243 gezelter 1722 if (simParams->haveRNEMD_targetJzKE()) {
244     set_RNEMD_target_JzKE(simParams->getRNEMD_targetJzKE());
245     } else {
246     set_RNEMD_target_JzKE(0.0);
247     }
248     if (simParams->haveRNEMD_targetJzpx()) {
249     set_RNEMD_target_jzpx(simParams->getRNEMD_targetJzpx());
250     } else {
251     set_RNEMD_target_jzpx(0.0);
252     }
253     jzp_.x() = targetJzpx_;
254     njzp_.x() = -targetJzpx_;
255     if (simParams->haveRNEMD_targetJzpy()) {
256     set_RNEMD_target_jzpy(simParams->getRNEMD_targetJzpy());
257     } else {
258     set_RNEMD_target_jzpy(0.0);
259     }
260     jzp_.y() = targetJzpy_;
261     njzp_.y() = -targetJzpy_;
262     if (simParams->haveRNEMD_targetJzpz()) {
263     set_RNEMD_target_jzpz(simParams->getRNEMD_targetJzpz());
264     } else {
265     set_RNEMD_target_jzpz(0.0);
266     }
267     jzp_.z() = targetJzpz_;
268     njzp_.z() = -targetJzpz_;
269 skuang 1368
270 gezelter 1329 #ifndef IS_MPI
271     if (simParams->haveSeed()) {
272     seedValue = simParams->getSeed();
273     randNumGen_ = new SeqRandNumGen(seedValue);
274     }else {
275     randNumGen_ = new SeqRandNumGen();
276     }
277     #else
278     if (simParams->haveSeed()) {
279     seedValue = simParams->getSeed();
280     randNumGen_ = new ParallelRandNumGen(seedValue);
281     }else {
282     randNumGen_ = new ParallelRandNumGen();
283     }
284     #endif
285     }
286    
287     RNEMD::~RNEMD() {
288     delete randNumGen_;
289 gezelter 1396
290 skuang 1368 #ifdef IS_MPI
291     if (worldRank == 0) {
292     #endif
293 gezelter 1629
294     sprintf(painCave.errMsg,
295     "RNEMD: total failed trials: %d\n",
296     failTrialCount_);
297     painCave.isFatal = 0;
298     painCave.severity = OPENMD_INFO;
299     simError();
300    
301 gezelter 1722 if (outputTemp_) tempLog_.close();
302     if (outputVx_) vxzLog_.close();
303     if (outputVy_) vyzLog_.close();
304    
305     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale ||
306     rnemdType_ == rnemdPyScale) {
307 gezelter 1629 sprintf(painCave.errMsg,
308     "RNEMD: total root-checking warnings: %d\n",
309     failRootCount_);
310     painCave.isFatal = 0;
311     painCave.severity = OPENMD_INFO;
312     simError();
313     }
314     if (output3DTemp_) {
315 skuang 1368 xTempLog_.close();
316     yTempLog_.close();
317     zTempLog_.close();
318     }
319 gezelter 1722 if (outputRotTemp_) rotTempLog_.close();
320    
321 skuang 1368 #ifdef IS_MPI
322     }
323     #endif
324 gezelter 1329 }
325 skuang 1330
326 gezelter 1329 void RNEMD::doSwap() {
327 gezelter 1331
328 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
329     Mat3x3d hmat = currentSnap_->getHmat();
330    
331 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
332    
333 gezelter 1333 int selei;
334 gezelter 1331 StuntDouble* sd;
335 gezelter 1333 int idx;
336 gezelter 1331
337 skuang 1338 RealType min_val;
338     bool min_found = false;
339     StuntDouble* min_sd;
340    
341     RealType max_val;
342     bool max_found = false;
343     StuntDouble* max_sd;
344    
345 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
346     sd = seleMan_.nextSelected(selei)) {
347 gezelter 1332
348 gezelter 1333 idx = sd->getLocalIndex();
349    
350 gezelter 1331 Vector3d pos = sd->getPos();
351 gezelter 1332
352     // wrap the stuntdouble's position back into the box:
353    
354 gezelter 1331 if (usePeriodicBoundaryConditions_)
355 gezelter 1332 currentSnap_->wrapVector(pos);
356    
357     // which bin is this stuntdouble in?
358 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
359 gezelter 1332
360 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
361 gezelter 1332
362 gezelter 1333
363 gezelter 1332 // if we're in bin 0 or the middleBin
364 skuang 1368 if (binNo == 0 || binNo == midBin_) {
365 gezelter 1332
366     RealType mass = sd->getMass();
367     Vector3d vel = sd->getVel();
368     RealType value;
369    
370     switch(rnemdType_) {
371 skuang 1368 case rnemdKineticSwap :
372 gezelter 1332
373 gezelter 1722 value = mass * vel.lengthSquare();
374    
375     if (sd->isDirectional()) {
376 gezelter 1332 Vector3d angMom = sd->getJ();
377     Mat3x3d I = sd->getI();
378    
379     if (sd->isLinear()) {
380 gezelter 1722 int i = sd->linearAxis();
381     int j = (i + 1) % 3;
382     int k = (i + 2) % 3;
383     value += angMom[j] * angMom[j] / I(j, j) +
384     angMom[k] * angMom[k] / I(k, k);
385 gezelter 1332 } else {
386 gezelter 1722 value += angMom[0]*angMom[0]/I(0, 0)
387     + angMom[1]*angMom[1]/I(1, 1)
388     + angMom[2]*angMom[2]/I(2, 2);
389 gezelter 1332 }
390 gezelter 1722 } //angular momenta exchange enabled
391     //energyConvert temporarily disabled
392 skuang 1368 //make exchangeSum_ comparable between swap & scale
393 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
394 skuang 1368 value *= 0.5;
395 gezelter 1332 break;
396     case rnemdPx :
397     value = mass * vel[0];
398     break;
399     case rnemdPy :
400     value = mass * vel[1];
401     break;
402     case rnemdPz :
403     value = mass * vel[2];
404     break;
405     default :
406     break;
407     }
408    
409 skuang 1338 if (binNo == 0) {
410     if (!min_found) {
411     min_val = value;
412     min_sd = sd;
413     min_found = true;
414     } else {
415     if (min_val > value) {
416     min_val = value;
417     min_sd = sd;
418     }
419     }
420 skuang 1368 } else { //midBin_
421 skuang 1338 if (!max_found) {
422     max_val = value;
423     max_sd = sd;
424     max_found = true;
425     } else {
426     if (max_val < value) {
427     max_val = value;
428     max_sd = sd;
429     }
430     }
431     }
432 gezelter 1332 }
433 gezelter 1331 }
434 skuang 1341
435 gezelter 1350 #ifdef IS_MPI
436     int nProc, worldRank;
437 skuang 1338
438 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
439     worldRank = MPI::COMM_WORLD.Get_rank();
440    
441     bool my_min_found = min_found;
442     bool my_max_found = max_found;
443    
444     // Even if we didn't find a minimum, did someone else?
445 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR);
446 gezelter 1350 // Even if we didn't find a maximum, did someone else?
447 gezelter 1629 MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR);
448 gezelter 1722 #endif
449    
450     if (max_found && min_found) {
451    
452     #ifdef IS_MPI
453     struct {
454     RealType val;
455     int rank;
456     } max_vals, min_vals;
457 gezelter 1350
458 gezelter 1722 if (my_min_found) {
459 gezelter 1350 min_vals.val = min_val;
460 gezelter 1722 } else {
461 gezelter 1350 min_vals.val = HONKING_LARGE_VALUE;
462 gezelter 1722 }
463 gezelter 1350 min_vals.rank = worldRank;
464    
465     // Who had the minimum?
466     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
467     1, MPI::REALTYPE_INT, MPI::MINLOC);
468     min_val = min_vals.val;
469    
470 gezelter 1722 if (my_max_found) {
471 gezelter 1350 max_vals.val = max_val;
472 gezelter 1722 } else {
473 gezelter 1350 max_vals.val = -HONKING_LARGE_VALUE;
474 gezelter 1722 }
475 gezelter 1350 max_vals.rank = worldRank;
476    
477     // Who had the maximum?
478     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
479     1, MPI::REALTYPE_INT, MPI::MAXLOC);
480     max_val = max_vals.val;
481     #endif
482 gezelter 1722
483 gezelter 1629 if (min_val < max_val) {
484 gezelter 1722
485 gezelter 1350 #ifdef IS_MPI
486     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
487     // I have both maximum and minimum, so proceed like a single
488     // processor version:
489     #endif
490 gezelter 1722
491 gezelter 1350 Vector3d min_vel = min_sd->getVel();
492     Vector3d max_vel = max_sd->getVel();
493     RealType temp_vel;
494    
495     switch(rnemdType_) {
496 skuang 1368 case rnemdKineticSwap :
497 gezelter 1350 min_sd->setVel(max_vel);
498     max_sd->setVel(min_vel);
499 gezelter 1722 if (min_sd->isDirectional() && max_sd->isDirectional()) {
500 gezelter 1350 Vector3d min_angMom = min_sd->getJ();
501     Vector3d max_angMom = max_sd->getJ();
502     min_sd->setJ(max_angMom);
503     max_sd->setJ(min_angMom);
504 gezelter 1722 }//angular momenta exchange enabled
505     //assumes same rigid body identity
506 gezelter 1350 break;
507     case rnemdPx :
508     temp_vel = min_vel.x();
509     min_vel.x() = max_vel.x();
510     max_vel.x() = temp_vel;
511     min_sd->setVel(min_vel);
512     max_sd->setVel(max_vel);
513     break;
514     case rnemdPy :
515     temp_vel = min_vel.y();
516     min_vel.y() = max_vel.y();
517     max_vel.y() = temp_vel;
518     min_sd->setVel(min_vel);
519     max_sd->setVel(max_vel);
520     break;
521     case rnemdPz :
522     temp_vel = min_vel.z();
523     min_vel.z() = max_vel.z();
524     max_vel.z() = temp_vel;
525     min_sd->setVel(min_vel);
526     max_sd->setVel(max_vel);
527     break;
528     default :
529     break;
530     }
531 gezelter 1722
532 gezelter 1350 #ifdef IS_MPI
533     // the rest of the cases only apply in parallel simulations:
534     } else if (max_vals.rank == worldRank) {
535     // I had the max, but not the minimum
536    
537     Vector3d min_vel;
538     Vector3d max_vel = max_sd->getVel();
539     MPI::Status status;
540 skuang 1341
541 gezelter 1350 // point-to-point swap of the velocity vector
542     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
543     min_vals.rank, 0,
544     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
545     min_vals.rank, 0, status);
546    
547     switch(rnemdType_) {
548 skuang 1368 case rnemdKineticSwap :
549 gezelter 1350 max_sd->setVel(min_vel);
550 gezelter 1722 //angular momenta exchange enabled
551 gezelter 1350 if (max_sd->isDirectional()) {
552     Vector3d min_angMom;
553     Vector3d max_angMom = max_sd->getJ();
554 gezelter 1629
555 gezelter 1350 // point-to-point swap of the angular momentum vector
556     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
557     MPI::REALTYPE, min_vals.rank, 1,
558     min_angMom.getArrayPointer(), 3,
559     MPI::REALTYPE, min_vals.rank, 1,
560     status);
561 gezelter 1629
562 gezelter 1350 max_sd->setJ(min_angMom);
563 gezelter 1722 }
564 gezelter 1350 break;
565     case rnemdPx :
566     max_vel.x() = min_vel.x();
567     max_sd->setVel(max_vel);
568     break;
569     case rnemdPy :
570     max_vel.y() = min_vel.y();
571     max_sd->setVel(max_vel);
572     break;
573     case rnemdPz :
574     max_vel.z() = min_vel.z();
575     max_sd->setVel(max_vel);
576     break;
577     default :
578     break;
579 skuang 1341 }
580 gezelter 1350 } else if (min_vals.rank == worldRank) {
581     // I had the minimum but not the maximum:
582    
583     Vector3d max_vel;
584     Vector3d min_vel = min_sd->getVel();
585     MPI::Status status;
586    
587     // point-to-point swap of the velocity vector
588     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
589     max_vals.rank, 0,
590     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
591     max_vals.rank, 0, status);
592    
593     switch(rnemdType_) {
594 skuang 1368 case rnemdKineticSwap :
595 gezelter 1350 min_sd->setVel(max_vel);
596 gezelter 1722 //angular momenta exchange enabled
597 gezelter 1350 if (min_sd->isDirectional()) {
598     Vector3d min_angMom = min_sd->getJ();
599     Vector3d max_angMom;
600 gezelter 1629
601 gezelter 1350 // point-to-point swap of the angular momentum vector
602     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
603     MPI::REALTYPE, max_vals.rank, 1,
604     max_angMom.getArrayPointer(), 3,
605     MPI::REALTYPE, max_vals.rank, 1,
606     status);
607 gezelter 1629
608 gezelter 1350 min_sd->setJ(max_angMom);
609     }
610     break;
611     case rnemdPx :
612     min_vel.x() = max_vel.x();
613     min_sd->setVel(min_vel);
614     break;
615     case rnemdPy :
616     min_vel.y() = max_vel.y();
617     min_sd->setVel(min_vel);
618     break;
619     case rnemdPz :
620     min_vel.z() = max_vel.z();
621     min_sd->setVel(min_vel);
622     break;
623     default :
624     break;
625     }
626     }
627     #endif
628     exchangeSum_ += max_val - min_val;
629 gezelter 1629 } else {
630     sprintf(painCave.errMsg,
631     "RNEMD: exchange NOT performed because min_val > max_val\n");
632     painCave.isFatal = 0;
633     painCave.severity = OPENMD_INFO;
634     simError();
635 skuang 1368 failTrialCount_++;
636 skuang 1338 }
637     } else {
638 gezelter 1629 sprintf(painCave.errMsg,
639 gezelter 1722 "RNEMD: exchange NOT performed because selected object\n"
640     "\tnot present in at least one of the two slabs.\n");
641 gezelter 1629 painCave.isFatal = 0;
642     painCave.severity = OPENMD_INFO;
643     simError();
644 skuang 1368 failTrialCount_++;
645 skuang 1338 }
646 gezelter 1350
647 skuang 1338 }
648 gezelter 1350
649 skuang 1368 void RNEMD::doScale() {
650 skuang 1338
651     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
652     Mat3x3d hmat = currentSnap_->getHmat();
653    
654     seleMan_.setSelectionSet(evaluator_.evaluate());
655    
656     int selei;
657     StuntDouble* sd;
658     int idx;
659    
660 gezelter 1629 vector<StuntDouble*> hotBin, coldBin;
661 gezelter 1350
662 skuang 1368 RealType Phx = 0.0;
663     RealType Phy = 0.0;
664     RealType Phz = 0.0;
665     RealType Khx = 0.0;
666     RealType Khy = 0.0;
667     RealType Khz = 0.0;
668 gezelter 1722 RealType Khw = 0.0;
669 skuang 1368 RealType Pcx = 0.0;
670     RealType Pcy = 0.0;
671     RealType Pcz = 0.0;
672     RealType Kcx = 0.0;
673     RealType Kcy = 0.0;
674     RealType Kcz = 0.0;
675 gezelter 1722 RealType Kcw = 0.0;
676 skuang 1368
677 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
678     sd = seleMan_.nextSelected(selei)) {
679 skuang 1368
680     idx = sd->getLocalIndex();
681    
682     Vector3d pos = sd->getPos();
683    
684     // wrap the stuntdouble's position back into the box:
685    
686     if (usePeriodicBoundaryConditions_)
687     currentSnap_->wrapVector(pos);
688    
689     // which bin is this stuntdouble in?
690     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
691    
692 gezelter 1629 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
693 skuang 1368
694     // if we're in bin 0 or the middleBin
695     if (binNo == 0 || binNo == midBin_) {
696    
697     RealType mass = sd->getMass();
698     Vector3d vel = sd->getVel();
699    
700     if (binNo == 0) {
701     hotBin.push_back(sd);
702     Phx += mass * vel.x();
703     Phy += mass * vel.y();
704     Phz += mass * vel.z();
705     Khx += mass * vel.x() * vel.x();
706     Khy += mass * vel.y() * vel.y();
707     Khz += mass * vel.z() * vel.z();
708 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
709     if (sd->isDirectional()) {
710     Vector3d angMom = sd->getJ();
711     Mat3x3d I = sd->getI();
712     if (sd->isLinear()) {
713     int i = sd->linearAxis();
714     int j = (i + 1) % 3;
715     int k = (i + 2) % 3;
716     Khw += angMom[j] * angMom[j] / I(j, j) +
717     angMom[k] * angMom[k] / I(k, k);
718     } else {
719     Khw += angMom[0]*angMom[0]/I(0, 0)
720     + angMom[1]*angMom[1]/I(1, 1)
721     + angMom[2]*angMom[2]/I(2, 2);
722     }
723     }
724     //}
725 skuang 1368 } else { //midBin_
726     coldBin.push_back(sd);
727     Pcx += mass * vel.x();
728     Pcy += mass * vel.y();
729     Pcz += mass * vel.z();
730     Kcx += mass * vel.x() * vel.x();
731     Kcy += mass * vel.y() * vel.y();
732     Kcz += mass * vel.z() * vel.z();
733 gezelter 1722 //if (rnemdType_ == rnemdKineticScaleVAM) {
734     if (sd->isDirectional()) {
735     Vector3d angMom = sd->getJ();
736     Mat3x3d I = sd->getI();
737     if (sd->isLinear()) {
738     int i = sd->linearAxis();
739     int j = (i + 1) % 3;
740     int k = (i + 2) % 3;
741     Kcw += angMom[j] * angMom[j] / I(j, j) +
742     angMom[k] * angMom[k] / I(k, k);
743     } else {
744     Kcw += angMom[0]*angMom[0]/I(0, 0)
745     + angMom[1]*angMom[1]/I(1, 1)
746     + angMom[2]*angMom[2]/I(2, 2);
747     }
748     }
749     //}
750 skuang 1368 }
751     }
752     }
753 gezelter 1722
754 skuang 1368 Khx *= 0.5;
755     Khy *= 0.5;
756     Khz *= 0.5;
757 gezelter 1722 Khw *= 0.5;
758 skuang 1368 Kcx *= 0.5;
759     Kcy *= 0.5;
760     Kcz *= 0.5;
761 gezelter 1722 Kcw *= 0.5;
762 skuang 1368
763 gezelter 1722 std::cerr << "Khx= " << Khx << "\tKhy= " << Khy << "\tKhz= " << Khz
764     << "\tKhw= " << Khw << "\tKcx= " << Kcx << "\tKcy= " << Kcy
765     << "\tKcz= " << Kcz << "\tKcw= " << Kcw << "\n";
766     std::cerr << "Phx= " << Phx << "\tPhy= " << Phy << "\tPhz= " << Phz
767     << "\tPcx= " << Pcx << "\tPcy= " << Pcy << "\tPcz= " <<Pcz<<"\n";
768    
769 skuang 1368 #ifdef IS_MPI
770     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
771     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
772     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
773     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
774     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
775     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
776    
777     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
778     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
779     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
780 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM);
781    
782 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
783     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
784     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
785 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM);
786 skuang 1368 #endif
787    
788 gezelter 1722 //solve coldBin coeff's first
789 skuang 1368 RealType px = Pcx / Phx;
790     RealType py = Pcy / Phy;
791     RealType pz = Pcz / Phz;
792 gezelter 1722 RealType c, x, y, z;
793     bool successfulScale = false;
794     if ((rnemdType_ == rnemdKineticScaleVAM) ||
795     (rnemdType_ == rnemdKineticScaleAM)) {
796     //may need sanity check Khw & Kcw > 0
797 skuang 1368
798 gezelter 1722 if (rnemdType_ == rnemdKineticScaleVAM) {
799     c = 1.0 - targetFlux_ / (Kcx + Kcy + Kcz + Kcw);
800     } else {
801     c = 1.0 - targetFlux_ / Kcw;
802     }
803 skuang 1368
804 gezelter 1722 if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients
805     c = sqrt(c);
806     std::cerr << "cold slab scaling coefficient: " << c << endl;
807     //now convert to hotBin coefficient
808     RealType w = 0.0;
809     if (rnemdType_ == rnemdKineticScaleVAM) {
810     x = 1.0 + px * (1.0 - c);
811     y = 1.0 + py * (1.0 - c);
812     z = 1.0 + pz * (1.0 - c);
813     /* more complicated way
814     w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz
815     + Khx * px * px + Khy * py * py + Khz * pz * pz)
816     - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)
817     + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px)
818     + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
819     - Kcx - Kcy - Kcz)) / Khw; the following is simpler
820     */
821     if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) &&
822     (fabs(z - 1.0) < 0.1)) {
823     w = 1.0 + (targetFlux_ + Khx * (1.0 - x * x) + Khy * (1.0 - y * y)
824     + Khz * (1.0 - z * z)) / Khw;
825     }//no need to calculate w if x, y or z is out of range
826     } else {
827     w = 1.0 + targetFlux_ / Khw;
828     }
829     if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients
830     //if w is in the right range, so should be x, y, z.
831     vector<StuntDouble*>::iterator sdi;
832     Vector3d vel;
833     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
834     if (rnemdType_ == rnemdKineticScaleVAM) {
835     vel = (*sdi)->getVel() * c;
836     //vel.x() *= c;
837     //vel.y() *= c;
838     //vel.z() *= c;
839     (*sdi)->setVel(vel);
840     }
841     if ((*sdi)->isDirectional()) {
842     Vector3d angMom = (*sdi)->getJ() * c;
843     //angMom[0] *= c;
844     //angMom[1] *= c;
845     //angMom[2] *= c;
846     (*sdi)->setJ(angMom);
847     }
848     }
849     w = sqrt(w);
850     std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z
851     << "\twh= " << w << endl;
852     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
853     if (rnemdType_ == rnemdKineticScaleVAM) {
854     vel = (*sdi)->getVel();
855     vel.x() *= x;
856     vel.y() *= y;
857     vel.z() *= z;
858     (*sdi)->setVel(vel);
859     }
860     if ((*sdi)->isDirectional()) {
861     Vector3d angMom = (*sdi)->getJ() * w;
862     //angMom[0] *= w;
863     //angMom[1] *= w;
864     //angMom[2] *= w;
865     (*sdi)->setJ(angMom);
866     }
867     }
868     successfulScale = true;
869     exchangeSum_ += targetFlux_;
870     }
871 skuang 1368 }
872 gezelter 1722 } else {
873     RealType a000, a110, c0, a001, a111, b01, b11, c1;
874     switch(rnemdType_) {
875     case rnemdKineticScale :
876     /* used hotBin coeff's & only scale x & y dimensions
877     RealType px = Phx / Pcx;
878     RealType py = Phy / Pcy;
879     a110 = Khy;
880     c0 = - Khx - Khy - targetFlux_;
881     a000 = Khx;
882     a111 = Kcy * py * py;
883     b11 = -2.0 * Kcy * py * (1.0 + py);
884     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
885     b01 = -2.0 * Kcx * px * (1.0 + px);
886     a001 = Kcx * px * px;
887     */
888     //scale all three dimensions, let c_x = c_y
889     a000 = Kcx + Kcy;
890     a110 = Kcz;
891     c0 = targetFlux_ - Kcx - Kcy - Kcz;
892     a001 = Khx * px * px + Khy * py * py;
893     a111 = Khz * pz * pz;
894     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
895     b11 = -2.0 * Khz * pz * (1.0 + pz);
896     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
897     + Khz * pz * (2.0 + pz) - targetFlux_;
898     break;
899     case rnemdPxScale :
900     c = 1 - targetFlux_ / Pcx;
901     a000 = Kcy;
902     a110 = Kcz;
903     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
904     a001 = py * py * Khy;
905     a111 = pz * pz * Khz;
906     b01 = -2.0 * Khy * py * (1.0 + py);
907     b11 = -2.0 * Khz * pz * (1.0 + pz);
908     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
909     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
910     break;
911     case rnemdPyScale :
912     c = 1 - targetFlux_ / Pcy;
913     a000 = Kcx;
914     a110 = Kcz;
915     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
916     a001 = px * px * Khx;
917     a111 = pz * pz * Khz;
918     b01 = -2.0 * Khx * px * (1.0 + px);
919     b11 = -2.0 * Khz * pz * (1.0 + pz);
920     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
921     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
922     break;
923     case rnemdPzScale ://we don't really do this, do we?
924     c = 1 - targetFlux_ / Pcz;
925     a000 = Kcx;
926     a110 = Kcy;
927     c0 = Kcz * c * c - Kcx - Kcy - Kcz;
928     a001 = px * px * Khx;
929     a111 = py * py * Khy;
930     b01 = -2.0 * Khx * px * (1.0 + px);
931     b11 = -2.0 * Khy * py * (1.0 + py);
932     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
933     + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0);
934     break;
935     default :
936     break;
937 skuang 1368 }
938 gezelter 1722
939     RealType v1 = a000 * a111 - a001 * a110;
940     RealType v2 = a000 * b01;
941     RealType v3 = a000 * b11;
942     RealType v4 = a000 * c1 - a001 * c0;
943     RealType v8 = a110 * b01;
944     RealType v10 = - b01 * c0;
945    
946     RealType u0 = v2 * v10 - v4 * v4;
947     RealType u1 = -2.0 * v3 * v4;
948     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
949     RealType u3 = -2.0 * v1 * v3;
950     RealType u4 = - v1 * v1;
951     //rescale coefficients
952     RealType maxAbs = fabs(u0);
953     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
954     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
955     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
956     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
957     u0 /= maxAbs;
958     u1 /= maxAbs;
959     u2 /= maxAbs;
960     u3 /= maxAbs;
961     u4 /= maxAbs;
962     //max_element(start, end) is also available.
963     Polynomial<RealType> poly; //same as DoublePolynomial poly;
964     poly.setCoefficient(4, u4);
965     poly.setCoefficient(3, u3);
966     poly.setCoefficient(2, u2);
967     poly.setCoefficient(1, u1);
968     poly.setCoefficient(0, u0);
969     vector<RealType> realRoots = poly.FindRealRoots();
970    
971     vector<RealType>::iterator ri;
972     RealType r1, r2, alpha0;
973     vector<pair<RealType,RealType> > rps;
974     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
975     r2 = *ri;
976     //check if FindRealRoots() give the right answer
977     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
978     sprintf(painCave.errMsg,
979     "RNEMD Warning: polynomial solve seems to have an error!");
980     painCave.isFatal = 0;
981     simError();
982     failRootCount_++;
983     }
984     //might not be useful w/o rescaling coefficients
985     alpha0 = -c0 - a110 * r2 * r2;
986     if (alpha0 >= 0.0) {
987     r1 = sqrt(alpha0 / a000);
988     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
989     < 1e-6)
990     { rps.push_back(make_pair(r1, r2)); }
991     if (r1 > 1e-6) { //r1 non-negative
992     r1 = -r1;
993     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111))
994     < 1e-6)
995     { rps.push_back(make_pair(r1, r2)); }
996     }
997     }
998 skuang 1368 }
999 gezelter 1722 // Consider combining together the solving pair part w/ the searching
1000     // best solution part so that we don't need the pairs vector
1001     if (!rps.empty()) {
1002     RealType smallestDiff = HONKING_LARGE_VALUE;
1003     RealType diff;
1004     pair<RealType,RealType> bestPair = make_pair(1.0, 1.0);
1005     vector<pair<RealType,RealType> >::iterator rpi;
1006     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
1007     r1 = (*rpi).first;
1008     r2 = (*rpi).second;
1009     switch(rnemdType_) {
1010     case rnemdKineticScale :
1011     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1012     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
1013     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1014     break;
1015     case rnemdPxScale :
1016     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1017     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
1018     break;
1019     case rnemdPyScale :
1020     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1021     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
1022     break;
1023     case rnemdPzScale :
1024     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
1025     + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2);
1026     default :
1027     break;
1028     }
1029     if (diff < smallestDiff) {
1030     smallestDiff = diff;
1031     bestPair = *rpi;
1032     }
1033     }
1034 skuang 1368 #ifdef IS_MPI
1035 gezelter 1722 if (worldRank == 0) {
1036 skuang 1368 #endif
1037 gezelter 1722 sprintf(painCave.errMsg,
1038     "RNEMD: roots r1= %lf\tr2 = %lf\n",
1039     bestPair.first, bestPair.second);
1040     painCave.isFatal = 0;
1041     painCave.severity = OPENMD_INFO;
1042     simError();
1043 skuang 1368 #ifdef IS_MPI
1044 gezelter 1722 }
1045 skuang 1368 #endif
1046 gezelter 1722
1047     switch(rnemdType_) {
1048     case rnemdKineticScale :
1049     x = bestPair.first;
1050     y = bestPair.first;
1051     z = bestPair.second;
1052     break;
1053     case rnemdPxScale :
1054     x = c;
1055     y = bestPair.first;
1056     z = bestPair.second;
1057     break;
1058     case rnemdPyScale :
1059     x = bestPair.first;
1060     y = c;
1061     z = bestPair.second;
1062     break;
1063     case rnemdPzScale :
1064     x = bestPair.first;
1065     y = bestPair.second;
1066     z = c;
1067     break;
1068     default :
1069     break;
1070     }
1071     vector<StuntDouble*>::iterator sdi;
1072     Vector3d vel;
1073     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1074     vel = (*sdi)->getVel();
1075     vel.x() *= x;
1076     vel.y() *= y;
1077     vel.z() *= z;
1078     (*sdi)->setVel(vel);
1079     }
1080     //convert to hotBin coefficient
1081     x = 1.0 + px * (1.0 - x);
1082     y = 1.0 + py * (1.0 - y);
1083     z = 1.0 + pz * (1.0 - z);
1084     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1085     vel = (*sdi)->getVel();
1086     vel.x() *= x;
1087     vel.y() *= y;
1088     vel.z() *= z;
1089     (*sdi)->setVel(vel);
1090     }
1091     successfulScale = true;
1092     exchangeSum_ += targetFlux_;
1093 gezelter 1629 }
1094 gezelter 1722 }
1095     if (successfulScale != true) {
1096     sprintf(painCave.errMsg,
1097     "RNEMD: exchange NOT performed!\n");
1098     painCave.isFatal = 0;
1099     painCave.severity = OPENMD_INFO;
1100     simError();
1101     failTrialCount_++;
1102     }
1103     }
1104    
1105     void RNEMD::doShiftScale() {
1106    
1107     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1108     Mat3x3d hmat = currentSnap_->getHmat();
1109    
1110     seleMan_.setSelectionSet(evaluator_.evaluate());
1111    
1112     int selei;
1113     StuntDouble* sd;
1114     int idx;
1115    
1116     vector<StuntDouble*> hotBin, coldBin;
1117    
1118     Vector3d Ph(V3Zero);
1119     RealType Mh = 0.0;
1120     RealType Kh = 0.0;
1121     Vector3d Pc(V3Zero);
1122     RealType Mc = 0.0;
1123     RealType Kc = 0.0;
1124    
1125     for (sd = seleMan_.beginSelected(selei); sd != NULL;
1126     sd = seleMan_.nextSelected(selei)) {
1127    
1128     idx = sd->getLocalIndex();
1129    
1130     Vector3d pos = sd->getPos();
1131    
1132     // wrap the stuntdouble's position back into the box:
1133    
1134     if (usePeriodicBoundaryConditions_)
1135     currentSnap_->wrapVector(pos);
1136    
1137     // which bin is this stuntdouble in?
1138     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1139    
1140     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + zShift_ + 0.5)) % nBins_;
1141    
1142     // if we're in bin 0 or the middleBin
1143     if (binNo == 0 || binNo == midBin_) {
1144    
1145     RealType mass = sd->getMass();
1146     Vector3d vel = sd->getVel();
1147    
1148     if (binNo == 0) {
1149     hotBin.push_back(sd);
1150     //std::cerr << "before, velocity = " << vel << endl;
1151     Ph += mass * vel;
1152     //std::cerr << "after, velocity = " << vel << endl;
1153     Mh += mass;
1154     Kh += mass * vel.lengthSquare();
1155     if (rnemdType_ == rnemdShiftScaleVAM) {
1156     if (sd->isDirectional()) {
1157     Vector3d angMom = sd->getJ();
1158     Mat3x3d I = sd->getI();
1159     if (sd->isLinear()) {
1160     int i = sd->linearAxis();
1161     int j = (i + 1) % 3;
1162     int k = (i + 2) % 3;
1163     Kh += angMom[j] * angMom[j] / I(j, j) +
1164     angMom[k] * angMom[k] / I(k, k);
1165     } else {
1166     Kh += angMom[0] * angMom[0] / I(0, 0) +
1167     angMom[1] * angMom[1] / I(1, 1) +
1168     angMom[2] * angMom[2] / I(2, 2);
1169     }
1170     }
1171     }
1172     } else { //midBin_
1173     coldBin.push_back(sd);
1174     Pc += mass * vel;
1175     Mc += mass;
1176     Kc += mass * vel.lengthSquare();
1177     if (rnemdType_ == rnemdShiftScaleVAM) {
1178     if (sd->isDirectional()) {
1179     Vector3d angMom = sd->getJ();
1180     Mat3x3d I = sd->getI();
1181     if (sd->isLinear()) {
1182     int i = sd->linearAxis();
1183     int j = (i + 1) % 3;
1184     int k = (i + 2) % 3;
1185     Kc += angMom[j] * angMom[j] / I(j, j) +
1186     angMom[k] * angMom[k] / I(k, k);
1187     } else {
1188     Kc += angMom[0] * angMom[0] / I(0, 0) +
1189     angMom[1] * angMom[1] / I(1, 1) +
1190     angMom[2] * angMom[2] / I(2, 2);
1191     }
1192     }
1193     }
1194     }
1195 skuang 1368 }
1196 gezelter 1722 }
1197    
1198     Kh *= 0.5;
1199     Kc *= 0.5;
1200    
1201     std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc
1202     << "\tKc= " << Kc << endl;
1203     std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl;
1204    
1205     #ifdef IS_MPI
1206     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM);
1207     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM);
1208     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM);
1209     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM);
1210     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM);
1211     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM);
1212     #endif
1213    
1214     bool successfulExchange = false;
1215     if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty
1216     Vector3d vc = Pc / Mc;
1217     Vector3d ac = njzp_ / Mc + vc;
1218     RealType cNumerator = Kc - targetJzKE_ - 0.5 * Mc * ac.lengthSquare();
1219     if (cNumerator > 0.0) {
1220     RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare();
1221     if (cDenominator > 0.0) {
1222     RealType c = sqrt(cNumerator / cDenominator);
1223     if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients
1224     Vector3d vh = Ph / Mh;
1225     Vector3d ah = jzp_ / Mh + vh;
1226     RealType hNumerator = Kh + targetJzKE_
1227     - 0.5 * Mh * ah.lengthSquare();
1228     if (hNumerator > 0.0) {
1229     RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare();
1230     if (hDenominator > 0.0) {
1231     RealType h = sqrt(hNumerator / hDenominator);
1232     if ((h > 0.9) && (h < 1.1)) {
1233     std::cerr << "cold slab scaling coefficient: " << c << "\n";
1234     std::cerr << "hot slab scaling coefficient: " << h << "\n";
1235     vector<StuntDouble*>::iterator sdi;
1236     Vector3d vel;
1237     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
1238     //vel = (*sdi)->getVel();
1239     vel = ((*sdi)->getVel() - vc) * c + ac;
1240     (*sdi)->setVel(vel);
1241     if (rnemdType_ == rnemdShiftScaleVAM) {
1242     if ((*sdi)->isDirectional()) {
1243     Vector3d angMom = (*sdi)->getJ() * c;
1244     (*sdi)->setJ(angMom);
1245     }
1246     }
1247     }
1248     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
1249     //vel = (*sdi)->getVel();
1250     vel = ((*sdi)->getVel() - vh) * h + ah;
1251     (*sdi)->setVel(vel);
1252     if (rnemdType_ == rnemdShiftScaleVAM) {
1253     if ((*sdi)->isDirectional()) {
1254     Vector3d angMom = (*sdi)->getJ() * h;
1255     (*sdi)->setJ(angMom);
1256     }
1257     }
1258     }
1259     successfulExchange = true;
1260     exchangeSum_ += targetFlux_;
1261     // this is a redundant variable for doShiftScale() so that
1262     // RNEMD can output one exchange quantity needed in a job.
1263     // need a better way to do this.
1264     }
1265     }
1266     }
1267     }
1268     }
1269 skuang 1368 }
1270 gezelter 1722 }
1271     if (successfulExchange != true) {
1272 gezelter 1629 sprintf(painCave.errMsg,
1273 gezelter 1722 "RNEMD: exchange NOT performed!\n");
1274 gezelter 1629 painCave.isFatal = 0;
1275     painCave.severity = OPENMD_INFO;
1276     simError();
1277 skuang 1368 failTrialCount_++;
1278     }
1279     }
1280    
1281     void RNEMD::doRNEMD() {
1282    
1283     switch(rnemdType_) {
1284     case rnemdKineticScale :
1285 gezelter 1722 case rnemdKineticScaleVAM :
1286     case rnemdKineticScaleAM :
1287 skuang 1368 case rnemdPxScale :
1288     case rnemdPyScale :
1289     case rnemdPzScale :
1290     doScale();
1291     break;
1292     case rnemdKineticSwap :
1293     case rnemdPx :
1294     case rnemdPy :
1295     case rnemdPz :
1296     doSwap();
1297     break;
1298 gezelter 1722 case rnemdShiftScaleV :
1299     case rnemdShiftScaleVAM :
1300     doShiftScale();
1301     break;
1302 skuang 1368 case rnemdUnknown :
1303     default :
1304     break;
1305     }
1306     }
1307    
1308     void RNEMD::collectData() {
1309    
1310     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1311     Mat3x3d hmat = currentSnap_->getHmat();
1312    
1313     seleMan_.setSelectionSet(evaluator_.evaluate());
1314    
1315     int selei;
1316     StuntDouble* sd;
1317     int idx;
1318    
1319 gezelter 1629 // alternative approach, track all molecules instead of only those
1320     // selected for scaling/swapping:
1321     /*
1322     SimInfo::MoleculeIterator miter;
1323     vector<StuntDouble*>::iterator iiter;
1324     Molecule* mol;
1325     StuntDouble* integrableObject;
1326     for (mol = info_->beginMolecule(miter); mol != NULL;
1327     mol = info_->nextMolecule(miter))
1328     integrableObject is essentially sd
1329     for (integrableObject = mol->beginIntegrableObject(iiter);
1330     integrableObject != NULL;
1331     integrableObject = mol->nextIntegrableObject(iiter))
1332     */
1333 skuang 1368 for (sd = seleMan_.beginSelected(selei); sd != NULL;
1334     sd = seleMan_.nextSelected(selei)) {
1335 skuang 1338
1336     idx = sd->getLocalIndex();
1337    
1338     Vector3d pos = sd->getPos();
1339    
1340     // wrap the stuntdouble's position back into the box:
1341    
1342     if (usePeriodicBoundaryConditions_)
1343     currentSnap_->wrapVector(pos);
1344    
1345     // which bin is this stuntdouble in?
1346     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
1347    
1348 gezelter 1629 int binNo = int(rnemdLogWidth_ * (pos.z() / hmat(2,2) + 0.5)) %
1349     rnemdLogWidth_;
1350 gezelter 1722 // no symmetrization allowed due to arbitary rnemdLogWidth_
1351 gezelter 1629 /*
1352 skuang 1368 if (rnemdLogWidth_ == midBin_ + 1)
1353     if (binNo > midBin_)
1354     binNo = nBins_ - binNo;
1355 gezelter 1629 */
1356 skuang 1338 RealType mass = sd->getMass();
1357 gezelter 1722 mHist_[binNo] += mass;
1358 skuang 1338 Vector3d vel = sd->getVel();
1359     RealType value;
1360 gezelter 1722 //RealType xVal, yVal, zVal;
1361 skuang 1338
1362 gezelter 1722 if (outputTemp_) {
1363     value = mass * vel.lengthSquare();
1364     tempCount_[binNo] += 3;
1365 skuang 1338 if (sd->isDirectional()) {
1366     Vector3d angMom = sd->getJ();
1367     Mat3x3d I = sd->getI();
1368     if (sd->isLinear()) {
1369     int i = sd->linearAxis();
1370     int j = (i + 1) % 3;
1371     int k = (i + 2) % 3;
1372     value += angMom[j] * angMom[j] / I(j, j) +
1373     angMom[k] * angMom[k] / I(k, k);
1374 gezelter 1722 tempCount_[binNo] +=2;
1375 skuang 1341 } else {
1376 gezelter 1722 value += angMom[0] * angMom[0] / I(0, 0) +
1377     angMom[1]*angMom[1]/I(1, 1) +
1378     angMom[2]*angMom[2]/I(2, 2);
1379     tempCount_[binNo] +=3;
1380 skuang 1338 }
1381     }
1382 gezelter 1722 value = value / PhysicalConstants::energyConvert
1383     / PhysicalConstants::kb;//may move to getStatus()
1384     tempHist_[binNo] += value;
1385     }
1386     if (outputVx_) {
1387 skuang 1338 value = mass * vel[0];
1388 gezelter 1722 //vxzCount_[binNo]++;
1389     pxzHist_[binNo] += value;
1390     }
1391     if (outputVy_) {
1392 skuang 1338 value = mass * vel[1];
1393 gezelter 1722 //vyzCount_[binNo]++;
1394     pyzHist_[binNo] += value;
1395 skuang 1338 }
1396 gezelter 1629
1397     if (output3DTemp_) {
1398 gezelter 1722 value = mass * vel.x() * vel.x();
1399     xTempHist_[binNo] += value;
1400     value = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
1401 gezelter 1629 / PhysicalConstants::kb;
1402 gezelter 1722 yTempHist_[binNo] += value;
1403     value = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
1404 gezelter 1629 / PhysicalConstants::kb;
1405 gezelter 1722 zTempHist_[binNo] += value;
1406 gezelter 1629 xyzTempCount_[binNo]++;
1407     }
1408 gezelter 1722 if (outputRotTemp_) {
1409     if (sd->isDirectional()) {
1410     Vector3d angMom = sd->getJ();
1411     Mat3x3d I = sd->getI();
1412     if (sd->isLinear()) {
1413     int i = sd->linearAxis();
1414     int j = (i + 1) % 3;
1415     int k = (i + 2) % 3;
1416     value = angMom[j] * angMom[j] / I(j, j) +
1417     angMom[k] * angMom[k] / I(k, k);
1418     rotTempCount_[binNo] +=2;
1419     } else {
1420     value = angMom[0] * angMom[0] / I(0, 0) +
1421     angMom[1] * angMom[1] / I(1, 1) +
1422     angMom[2] * angMom[2] / I(2, 2);
1423     rotTempCount_[binNo] +=3;
1424     }
1425     }
1426     value = value / PhysicalConstants::energyConvert
1427     / PhysicalConstants::kb;//may move to getStatus()
1428     rotTempHist_[binNo] += value;
1429     }
1430    
1431 skuang 1338 }
1432 skuang 1368 }
1433    
1434     void RNEMD::getStarted() {
1435 gezelter 1629 collectData();
1436 gezelter 1722 /*now can output profile in step 0, but might not be useful;
1437     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1438     Stats& stat = currentSnap_->statData;
1439     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1440 gezelter 1629 */
1441 gezelter 1722 //may output a header for the log file here
1442 gezelter 1629 getStatus();
1443 skuang 1368 }
1444    
1445     void RNEMD::getStatus() {
1446    
1447     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1448     Stats& stat = currentSnap_->statData;
1449     RealType time = currentSnap_->getTime();
1450    
1451     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
1452     //or to be more meaningful, define another item as exchangeSum_ / time
1453 gezelter 1396 int j;
1454 skuang 1368
1455 gezelter 1350 #ifdef IS_MPI
1456    
1457     // all processors have the same number of bins, and STL vectors pack their
1458     // arrays, so in theory, this should be safe:
1459    
1460 gezelter 1722 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &mHist_[0],
1461     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1462     if (outputTemp_) {
1463     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempHist_[0],
1464     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1465     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &tempCount_[0],
1466     rnemdLogWidth_, MPI::INT, MPI::SUM);
1467     }
1468     if (outputVx_) {
1469     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pxzHist_[0],
1470     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1471     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vxzCount_[0],
1472     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1473     }
1474     if (outputVy_) {
1475     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pyzHist_[0],
1476     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1477     //MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &vyzCount_[0],
1478     // rnemdLogWidth_, MPI::INT, MPI::SUM);
1479     }
1480 gezelter 1629 if (output3DTemp_) {
1481 gezelter 1396 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xTempHist_[0],
1482     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1483     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &yTempHist_[0],
1484     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1485     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &zTempHist_[0],
1486     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1487 gezelter 1629 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &xyzTempCount_[0],
1488     rnemdLogWidth_, MPI::INT, MPI::SUM);
1489 gezelter 1396 }
1490 gezelter 1722 if (outputRotTemp_) {
1491     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempHist_[0],
1492     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
1493     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &rotTempCount_[0],
1494     rnemdLogWidth_, MPI::INT, MPI::SUM);
1495     }
1496    
1497 gezelter 1350 // If we're the root node, should we print out the results
1498     int worldRank = MPI::COMM_WORLD.Get_rank();
1499     if (worldRank == 0) {
1500     #endif
1501 gezelter 1722
1502     if (outputTemp_) {
1503     tempLog_ << time;
1504     for (j = 0; j < rnemdLogWidth_; j++) {
1505     tempLog_ << "\t" << tempHist_[j] / (RealType)tempCount_[j];
1506     }
1507     tempLog_ << endl;
1508 skuang 1368 }
1509 gezelter 1722 if (outputVx_) {
1510     vxzLog_ << time;
1511     for (j = 0; j < rnemdLogWidth_; j++) {
1512     vxzLog_ << "\t" << pxzHist_[j] / mHist_[j];
1513     }
1514     vxzLog_ << endl;
1515     }
1516     if (outputVy_) {
1517     vyzLog_ << time;
1518     for (j = 0; j < rnemdLogWidth_; j++) {
1519     vyzLog_ << "\t" << pyzHist_[j] / mHist_[j];
1520     }
1521     vyzLog_ << endl;
1522     }
1523    
1524 gezelter 1629 if (output3DTemp_) {
1525 gezelter 1722 RealType temp;
1526     xTempLog_ << time;
1527 skuang 1368 for (j = 0; j < rnemdLogWidth_; j++) {
1528 gezelter 1722 if (outputVx_)
1529     xTempHist_[j] -= pxzHist_[j] * pxzHist_[j] / mHist_[j];
1530     temp = xTempHist_[j] / (RealType)xyzTempCount_[j]
1531     / PhysicalConstants::energyConvert / PhysicalConstants::kb;
1532     xTempLog_ << "\t" << temp;
1533 skuang 1368 }
1534 gezelter 1722 xTempLog_ << endl;
1535 skuang 1368 yTempLog_ << time;
1536     for (j = 0; j < rnemdLogWidth_; j++) {
1537 gezelter 1629 yTempLog_ << "\t" << yTempHist_[j] / (RealType)xyzTempCount_[j];
1538 skuang 1368 }
1539 gezelter 1722 yTempLog_ << endl;
1540 skuang 1368 zTempLog_ << time;
1541     for (j = 0; j < rnemdLogWidth_; j++) {
1542 gezelter 1629 zTempLog_ << "\t" << zTempHist_[j] / (RealType)xyzTempCount_[j];
1543 skuang 1368 }
1544 gezelter 1722 zTempLog_ << endl;
1545 skuang 1368 }
1546 gezelter 1722 if (outputRotTemp_) {
1547     rotTempLog_ << time;
1548     for (j = 0; j < rnemdLogWidth_; j++) {
1549     rotTempLog_ << "\t" << rotTempHist_[j] / (RealType)rotTempCount_[j];
1550     }
1551     rotTempLog_ << endl;
1552     }
1553    
1554 gezelter 1350 #ifdef IS_MPI
1555 gezelter 1396 }
1556 gezelter 1350 #endif
1557 gezelter 1722
1558 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1559 gezelter 1722 mHist_[j] = 0.0;
1560 gezelter 1396 }
1561 gezelter 1722 if (outputTemp_)
1562     for (j = 0; j < rnemdLogWidth_; j++) {
1563     tempCount_[j] = 0;
1564     tempHist_[j] = 0.0;
1565     }
1566     if (outputVx_)
1567     for (j = 0; j < rnemdLogWidth_; j++) {
1568     //pxzCount_[j] = 0;
1569     pxzHist_[j] = 0.0;
1570     }
1571     if (outputVy_)
1572     for (j = 0; j < rnemdLogWidth_; j++) {
1573     //pyzCount_[j] = 0;
1574     pyzHist_[j] = 0.0;
1575     }
1576    
1577 gezelter 1629 if (output3DTemp_)
1578 gezelter 1396 for (j = 0; j < rnemdLogWidth_; j++) {
1579     xTempHist_[j] = 0.0;
1580     yTempHist_[j] = 0.0;
1581     zTempHist_[j] = 0.0;
1582 gezelter 1629 xyzTempCount_[j] = 0;
1583 gezelter 1396 }
1584 gezelter 1722 if (outputRotTemp_)
1585     for (j = 0; j < rnemdLogWidth_; j++) {
1586     rotTempCount_[j] = 0;
1587     rotTempHist_[j] = 0.0;
1588     }
1589 gezelter 1334 }
1590 skuang 1338 }
1591 gezelter 1722

Properties

Name Value
svn:keywords Author Id Revision Date