ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/RNEMD.cpp
Revision: 1390
Committed: Wed Nov 25 20:02:06 2009 UTC (15 years, 5 months ago) by gezelter
Original Path: trunk/src/integrators/RNEMD.cpp
File size: 32066 byte(s)
Log Message:
Almost all of the changes necessary to create OpenMD out of our old
project (OOPSE-4)

File Contents

# User Rev Content
1 gezelter 1329 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 1329 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 1329 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 1329 */
41    
42 skuang 1368 #include <cmath>
43 gezelter 1329 #include "integrators/RNEMD.hpp"
44 gezelter 1332 #include "math/Vector3.hpp"
45 gezelter 1329 #include "math/SquareMatrix3.hpp"
46 skuang 1368 #include "math/Polynomial.hpp"
47 gezelter 1329 #include "primitives/Molecule.hpp"
48     #include "primitives/StuntDouble.hpp"
49 gezelter 1390 #include "utils/PhysicalConstants.hpp"
50 gezelter 1332 #include "utils/Tuple.hpp"
51 gezelter 1329
52     #ifndef IS_MPI
53     #include "math/SeqRandNumGen.hpp"
54     #else
55     #include "math/ParallelRandNumGen.hpp"
56     #endif
57    
58 gezelter 1350 #define HONKING_LARGE_VALUE 1.0e10
59 gezelter 1329
60 gezelter 1390 namespace OpenMD {
61 gezelter 1329
62 gezelter 1334 RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) {
63 skuang 1368
64     failTrialCount_ = 0;
65     failRootCount_ = 0;
66    
67 gezelter 1329 int seedValue;
68     Globals * simParams = info->getSimParams();
69 skuang 1330
70 skuang 1368 stringToEnumMap_["KineticSwap"] = rnemdKineticSwap;
71     stringToEnumMap_["KineticScale"] = rnemdKineticScale;
72     stringToEnumMap_["PxScale"] = rnemdPxScale;
73     stringToEnumMap_["PyScale"] = rnemdPyScale;
74     stringToEnumMap_["PzScale"] = rnemdPzScale;
75 skuang 1330 stringToEnumMap_["Px"] = rnemdPx;
76     stringToEnumMap_["Py"] = rnemdPy;
77     stringToEnumMap_["Pz"] = rnemdPz;
78     stringToEnumMap_["Unknown"] = rnemdUnknown;
79    
80 gezelter 1331 rnemdObjectSelection_ = simParams->getRNEMD_objectSelection();
81 skuang 1341 evaluator_.loadScriptString(rnemdObjectSelection_);
82     seleMan_.setSelectionSet(evaluator_.evaluate());
83 gezelter 1331
84 skuang 1341 // do some sanity checking
85    
86     int selectionCount = seleMan_.getSelectionCount();
87     int nIntegrable = info->getNGlobalIntegrableObjects();
88    
89     if (selectionCount > nIntegrable) {
90     sprintf(painCave.errMsg,
91     "RNEMD warning: The current RNEMD_objectSelection,\n"
92     "\t\t%s\n"
93     "\thas resulted in %d selected objects. However,\n"
94     "\tthe total number of integrable objects in the system\n"
95     "\tis only %d. This is almost certainly not what you want\n"
96     "\tto do. A likely cause of this is forgetting the _RB_0\n"
97     "\tselector in the selection script!\n",
98     rnemdObjectSelection_.c_str(),
99     selectionCount, nIntegrable);
100     painCave.isFatal = 0;
101     simError();
102    
103     }
104 gezelter 1331
105 skuang 1368 const std::string st = simParams->getRNEMD_exchangeType();
106 skuang 1330
107     std::map<std::string, RNEMDTypeEnum>::iterator i;
108     i = stringToEnumMap_.find(st);
109 skuang 1368 rnemdType_ = (i == stringToEnumMap_.end()) ? RNEMD::rnemdUnknown : i->second;
110     if (rnemdType_ == rnemdUnknown) {
111     std::cerr << "WARNING! RNEMD Type Unknown!\n";
112     }
113 skuang 1330
114 skuang 1368 #ifdef IS_MPI
115     if (worldRank == 0) {
116     #endif
117    
118     std::string rnemdFileName;
119     std::string xTempFileName;
120     std::string yTempFileName;
121     std::string zTempFileName;
122     switch(rnemdType_) {
123     case rnemdKineticSwap :
124     case rnemdKineticScale :
125     rnemdFileName = "temperature.log";
126     break;
127     case rnemdPx :
128     case rnemdPxScale :
129     case rnemdPy :
130     case rnemdPyScale :
131     rnemdFileName = "momemtum.log";
132     xTempFileName = "temperatureX.log";
133     yTempFileName = "temperatureY.log";
134     zTempFileName = "temperatureZ.log";
135     xTempLog_.open(xTempFileName.c_str());
136     yTempLog_.open(yTempFileName.c_str());
137     zTempLog_.open(zTempFileName.c_str());
138     break;
139     case rnemdPz :
140     case rnemdPzScale :
141     case rnemdUnknown :
142     default :
143     rnemdFileName = "rnemd.log";
144     break;
145     }
146     rnemdLog_.open(rnemdFileName.c_str());
147    
148     #ifdef IS_MPI
149     }
150     #endif
151    
152     set_RNEMD_exchange_time(simParams->getRNEMD_exchangeTime());
153 skuang 1330 set_RNEMD_nBins(simParams->getRNEMD_nBins());
154 skuang 1368 midBin_ = nBins_ / 2;
155     if (simParams->haveRNEMD_logWidth()) {
156     rnemdLogWidth_ = simParams->getRNEMD_logWidth();
157     if (rnemdLogWidth_ != nBins_ || rnemdLogWidth_ != midBin_ + 1) {
158     std::cerr << "WARNING! RNEMD_logWidth has abnormal value!\n";
159     std::cerr << "Automaically set back to default.\n";
160     rnemdLogWidth_ = nBins_;
161     }
162     } else {
163     rnemdLogWidth_ = nBins_;
164     }
165     valueHist_.resize(rnemdLogWidth_, 0.0);
166     valueCount_.resize(rnemdLogWidth_, 0);
167     xTempHist_.resize(rnemdLogWidth_, 0.0);
168     yTempHist_.resize(rnemdLogWidth_, 0.0);
169     zTempHist_.resize(rnemdLogWidth_, 0.0);
170 skuang 1338
171 skuang 1368 set_RNEMD_exchange_total(0.0);
172     if (simParams->haveRNEMD_targetFlux()) {
173     set_RNEMD_target_flux(simParams->getRNEMD_targetFlux());
174     } else {
175     set_RNEMD_target_flux(0.0);
176     }
177    
178 gezelter 1329 #ifndef IS_MPI
179     if (simParams->haveSeed()) {
180     seedValue = simParams->getSeed();
181     randNumGen_ = new SeqRandNumGen(seedValue);
182     }else {
183     randNumGen_ = new SeqRandNumGen();
184     }
185     #else
186     if (simParams->haveSeed()) {
187     seedValue = simParams->getSeed();
188     randNumGen_ = new ParallelRandNumGen(seedValue);
189     }else {
190     randNumGen_ = new ParallelRandNumGen();
191     }
192     #endif
193     }
194    
195     RNEMD::~RNEMD() {
196     delete randNumGen_;
197 skuang 1368
198     std::cerr << "total fail trials: " << failTrialCount_ << "\n";
199     #ifdef IS_MPI
200     if (worldRank == 0) {
201     #endif
202     rnemdLog_.close();
203     if (rnemdType_ == rnemdKineticScale || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPyScale)
204     std::cerr<< "total root-checking warnings: " << failRootCount_ << "\n";
205     if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale || rnemdType_ == rnemdPy || rnemdType_ == rnemdPyScale) {
206     xTempLog_.close();
207     yTempLog_.close();
208     zTempLog_.close();
209     }
210     #ifdef IS_MPI
211     }
212     #endif
213 gezelter 1329 }
214 skuang 1330
215 gezelter 1329 void RNEMD::doSwap() {
216 gezelter 1331
217 gezelter 1332 Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
218     Mat3x3d hmat = currentSnap_->getHmat();
219    
220 gezelter 1331 seleMan_.setSelectionSet(evaluator_.evaluate());
221    
222 gezelter 1333 int selei;
223 gezelter 1331 StuntDouble* sd;
224 gezelter 1333 int idx;
225 gezelter 1331
226 skuang 1338 RealType min_val;
227     bool min_found = false;
228     StuntDouble* min_sd;
229    
230     RealType max_val;
231     bool max_found = false;
232     StuntDouble* max_sd;
233    
234 gezelter 1333 for (sd = seleMan_.beginSelected(selei); sd != NULL;
235     sd = seleMan_.nextSelected(selei)) {
236 gezelter 1332
237 gezelter 1333 idx = sd->getLocalIndex();
238    
239 gezelter 1331 Vector3d pos = sd->getPos();
240 gezelter 1332
241     // wrap the stuntdouble's position back into the box:
242    
243 gezelter 1331 if (usePeriodicBoundaryConditions_)
244 gezelter 1332 currentSnap_->wrapVector(pos);
245    
246     // which bin is this stuntdouble in?
247 gezelter 1334 // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
248 gezelter 1332
249 skuang 1341 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
250 gezelter 1332
251 gezelter 1333
252 gezelter 1332 // if we're in bin 0 or the middleBin
253 skuang 1368 if (binNo == 0 || binNo == midBin_) {
254 gezelter 1332
255     RealType mass = sd->getMass();
256     Vector3d vel = sd->getVel();
257     RealType value;
258    
259     switch(rnemdType_) {
260 skuang 1368 case rnemdKineticSwap :
261 gezelter 1332
262     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
263     vel[2]*vel[2]);
264     if (sd->isDirectional()) {
265     Vector3d angMom = sd->getJ();
266     Mat3x3d I = sd->getI();
267    
268     if (sd->isLinear()) {
269     int i = sd->linearAxis();
270     int j = (i + 1) % 3;
271     int k = (i + 2) % 3;
272     value += angMom[j] * angMom[j] / I(j, j) +
273     angMom[k] * angMom[k] / I(k, k);
274     } else {
275     value += angMom[0]*angMom[0]/I(0, 0)
276     + angMom[1]*angMom[1]/I(1, 1)
277     + angMom[2]*angMom[2]/I(2, 2);
278     }
279     }
280 skuang 1368 //make exchangeSum_ comparable between swap & scale
281     //temporarily without using energyConvert
282 gezelter 1390 //value = value * 0.5 / PhysicalConstants::energyConvert;
283 skuang 1368 value *= 0.5;
284 gezelter 1332 break;
285     case rnemdPx :
286     value = mass * vel[0];
287     break;
288     case rnemdPy :
289     value = mass * vel[1];
290     break;
291     case rnemdPz :
292     value = mass * vel[2];
293     break;
294     default :
295     break;
296     }
297    
298 skuang 1338 if (binNo == 0) {
299     if (!min_found) {
300     min_val = value;
301     min_sd = sd;
302     min_found = true;
303     } else {
304     if (min_val > value) {
305     min_val = value;
306     min_sd = sd;
307     }
308     }
309 skuang 1368 } else { //midBin_
310 skuang 1338 if (!max_found) {
311     max_val = value;
312     max_sd = sd;
313     max_found = true;
314     } else {
315     if (max_val < value) {
316     max_val = value;
317     max_sd = sd;
318     }
319     }
320     }
321 gezelter 1332 }
322 gezelter 1331 }
323 skuang 1341
324 gezelter 1350 #ifdef IS_MPI
325     int nProc, worldRank;
326 skuang 1338
327 gezelter 1350 nProc = MPI::COMM_WORLD.Get_size();
328     worldRank = MPI::COMM_WORLD.Get_rank();
329    
330     bool my_min_found = min_found;
331     bool my_max_found = max_found;
332    
333     // Even if we didn't find a minimum, did someone else?
334     MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found,
335     1, MPI::BOOL, MPI::LAND);
336    
337     // Even if we didn't find a maximum, did someone else?
338     MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found,
339     1, MPI::BOOL, MPI::LAND);
340    
341     struct {
342     RealType val;
343     int rank;
344     } max_vals, min_vals;
345    
346     if (min_found) {
347     if (my_min_found)
348     min_vals.val = min_val;
349     else
350     min_vals.val = HONKING_LARGE_VALUE;
351    
352     min_vals.rank = worldRank;
353    
354     // Who had the minimum?
355     MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals,
356     1, MPI::REALTYPE_INT, MPI::MINLOC);
357     min_val = min_vals.val;
358     }
359    
360     if (max_found) {
361     if (my_max_found)
362     max_vals.val = max_val;
363     else
364     max_vals.val = -HONKING_LARGE_VALUE;
365    
366     max_vals.rank = worldRank;
367    
368     // Who had the maximum?
369     MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals,
370     1, MPI::REALTYPE_INT, MPI::MAXLOC);
371     max_val = max_vals.val;
372     }
373     #endif
374    
375 skuang 1338 if (max_found && min_found) {
376     if (min_val< max_val) {
377 skuang 1341
378 gezelter 1350 #ifdef IS_MPI
379     if (max_vals.rank == worldRank && min_vals.rank == worldRank) {
380     // I have both maximum and minimum, so proceed like a single
381     // processor version:
382     #endif
383     // objects to be swapped: velocity & angular velocity
384     Vector3d min_vel = min_sd->getVel();
385     Vector3d max_vel = max_sd->getVel();
386     RealType temp_vel;
387    
388     switch(rnemdType_) {
389 skuang 1368 case rnemdKineticSwap :
390 gezelter 1350 min_sd->setVel(max_vel);
391     max_sd->setVel(min_vel);
392     if (min_sd->isDirectional() && max_sd->isDirectional()) {
393     Vector3d min_angMom = min_sd->getJ();
394     Vector3d max_angMom = max_sd->getJ();
395     min_sd->setJ(max_angMom);
396     max_sd->setJ(min_angMom);
397     }
398     break;
399     case rnemdPx :
400     temp_vel = min_vel.x();
401     min_vel.x() = max_vel.x();
402     max_vel.x() = temp_vel;
403     min_sd->setVel(min_vel);
404     max_sd->setVel(max_vel);
405     break;
406     case rnemdPy :
407     temp_vel = min_vel.y();
408     min_vel.y() = max_vel.y();
409     max_vel.y() = temp_vel;
410     min_sd->setVel(min_vel);
411     max_sd->setVel(max_vel);
412     break;
413     case rnemdPz :
414     temp_vel = min_vel.z();
415     min_vel.z() = max_vel.z();
416     max_vel.z() = temp_vel;
417     min_sd->setVel(min_vel);
418     max_sd->setVel(max_vel);
419     break;
420     default :
421     break;
422     }
423     #ifdef IS_MPI
424     // the rest of the cases only apply in parallel simulations:
425     } else if (max_vals.rank == worldRank) {
426     // I had the max, but not the minimum
427    
428     Vector3d min_vel;
429     Vector3d max_vel = max_sd->getVel();
430     MPI::Status status;
431 skuang 1341
432 gezelter 1350 // point-to-point swap of the velocity vector
433     MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE,
434     min_vals.rank, 0,
435     min_vel.getArrayPointer(), 3, MPI::REALTYPE,
436     min_vals.rank, 0, status);
437    
438     switch(rnemdType_) {
439 skuang 1368 case rnemdKineticSwap :
440 gezelter 1350 max_sd->setVel(min_vel);
441    
442     if (max_sd->isDirectional()) {
443     Vector3d min_angMom;
444     Vector3d max_angMom = max_sd->getJ();
445 skuang 1341
446 gezelter 1350 // point-to-point swap of the angular momentum vector
447     MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3,
448     MPI::REALTYPE, min_vals.rank, 1,
449     min_angMom.getArrayPointer(), 3,
450     MPI::REALTYPE, min_vals.rank, 1,
451     status);
452    
453     max_sd->setJ(min_angMom);
454     }
455     break;
456     case rnemdPx :
457     max_vel.x() = min_vel.x();
458     max_sd->setVel(max_vel);
459     break;
460     case rnemdPy :
461     max_vel.y() = min_vel.y();
462     max_sd->setVel(max_vel);
463     break;
464     case rnemdPz :
465     max_vel.z() = min_vel.z();
466     max_sd->setVel(max_vel);
467     break;
468     default :
469     break;
470 skuang 1341 }
471 gezelter 1350 } else if (min_vals.rank == worldRank) {
472     // I had the minimum but not the maximum:
473    
474     Vector3d max_vel;
475     Vector3d min_vel = min_sd->getVel();
476     MPI::Status status;
477    
478     // point-to-point swap of the velocity vector
479     MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE,
480     max_vals.rank, 0,
481     max_vel.getArrayPointer(), 3, MPI::REALTYPE,
482     max_vals.rank, 0, status);
483    
484     switch(rnemdType_) {
485 skuang 1368 case rnemdKineticSwap :
486 gezelter 1350 min_sd->setVel(max_vel);
487    
488     if (min_sd->isDirectional()) {
489     Vector3d min_angMom = min_sd->getJ();
490     Vector3d max_angMom;
491    
492     // point-to-point swap of the angular momentum vector
493     MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3,
494     MPI::REALTYPE, max_vals.rank, 1,
495     max_angMom.getArrayPointer(), 3,
496     MPI::REALTYPE, max_vals.rank, 1,
497     status);
498    
499     min_sd->setJ(max_angMom);
500     }
501     break;
502     case rnemdPx :
503     min_vel.x() = max_vel.x();
504     min_sd->setVel(min_vel);
505     break;
506     case rnemdPy :
507     min_vel.y() = max_vel.y();
508     min_sd->setVel(min_vel);
509     break;
510     case rnemdPz :
511     min_vel.z() = max_vel.z();
512     min_sd->setVel(min_vel);
513     break;
514     default :
515     break;
516     }
517     }
518     #endif
519     exchangeSum_ += max_val - min_val;
520 skuang 1338 } else {
521 skuang 1368 std::cerr << "exchange NOT performed!\nmin_val > max_val.\n";
522     failTrialCount_++;
523 skuang 1338 }
524     } else {
525 skuang 1368 std::cerr << "exchange NOT performed!\n";
526     std::cerr << "at least one of the two slabs empty.\n";
527     failTrialCount_++;
528 skuang 1338 }
529 gezelter 1350
530 skuang 1338 }
531 gezelter 1350
532 skuang 1368 void RNEMD::doScale() {
533 skuang 1338
534     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
535     Mat3x3d hmat = currentSnap_->getHmat();
536    
537     seleMan_.setSelectionSet(evaluator_.evaluate());
538    
539     int selei;
540     StuntDouble* sd;
541     int idx;
542    
543 skuang 1368 std::vector<StuntDouble*> hotBin, coldBin;
544 gezelter 1350
545 skuang 1368 RealType Phx = 0.0;
546     RealType Phy = 0.0;
547     RealType Phz = 0.0;
548     RealType Khx = 0.0;
549     RealType Khy = 0.0;
550     RealType Khz = 0.0;
551     RealType Pcx = 0.0;
552     RealType Pcy = 0.0;
553     RealType Pcz = 0.0;
554     RealType Kcx = 0.0;
555     RealType Kcy = 0.0;
556     RealType Kcz = 0.0;
557    
558 skuang 1338 for (sd = seleMan_.beginSelected(selei); sd != NULL;
559     sd = seleMan_.nextSelected(selei)) {
560 skuang 1368
561     idx = sd->getLocalIndex();
562    
563     Vector3d pos = sd->getPos();
564    
565     // wrap the stuntdouble's position back into the box:
566    
567     if (usePeriodicBoundaryConditions_)
568     currentSnap_->wrapVector(pos);
569    
570     // which bin is this stuntdouble in?
571     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
572    
573     int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
574    
575     // if we're in bin 0 or the middleBin
576     if (binNo == 0 || binNo == midBin_) {
577    
578     RealType mass = sd->getMass();
579     Vector3d vel = sd->getVel();
580    
581     if (binNo == 0) {
582     hotBin.push_back(sd);
583     Phx += mass * vel.x();
584     Phy += mass * vel.y();
585     Phz += mass * vel.z();
586     Khx += mass * vel.x() * vel.x();
587     Khy += mass * vel.y() * vel.y();
588     Khz += mass * vel.z() * vel.z();
589     } else { //midBin_
590     coldBin.push_back(sd);
591     Pcx += mass * vel.x();
592     Pcy += mass * vel.y();
593     Pcz += mass * vel.z();
594     Kcx += mass * vel.x() * vel.x();
595     Kcy += mass * vel.y() * vel.y();
596     Kcz += mass * vel.z() * vel.z();
597     }
598     }
599     }
600    
601     Khx *= 0.5;
602     Khy *= 0.5;
603     Khz *= 0.5;
604     Kcx *= 0.5;
605     Kcy *= 0.5;
606     Kcz *= 0.5;
607    
608     #ifdef IS_MPI
609     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM);
610     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM);
611     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM);
612     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM);
613     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM);
614     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM);
615    
616     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM);
617     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM);
618     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM);
619     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM);
620     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM);
621     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM);
622     #endif
623    
624     //use coldBin coeff's
625     RealType px = Pcx / Phx;
626     RealType py = Pcy / Phy;
627     RealType pz = Pcz / Phz;
628    
629     RealType a000, a110, c0, a001, a111, b01, b11, c1, c;
630     switch(rnemdType_) {
631     case rnemdKineticScale :
632     /*used hotBin coeff's & only scale x & y dimensions
633     RealType px = Phx / Pcx;
634     RealType py = Phy / Pcy;
635     a110 = Khy;
636     c0 = - Khx - Khy - targetFlux_;
637     a000 = Khx;
638     a111 = Kcy * py * py
639     b11 = -2.0 * Kcy * py * (1.0 + py);
640     c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + targetFlux_;
641     b01 = -2.0 * Kcx * px * (1.0 + px);
642     a001 = Kcx * px * px;
643     */
644    
645     //scale all three dimensions, let x = y
646     a000 = Kcx + Kcy;
647     a110 = Kcz;
648     c0 = targetFlux_ - Kcx - Kcy - Kcz;
649     a001 = Khx * px * px + Khy * py * py;
650     a111 = Khz * pz * pz;
651     b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py));
652     b11 = -2.0 * Khz * pz * (1.0 + pz);
653     c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py)
654     + Khz * pz * (2.0 + pz) - targetFlux_;
655     break;
656     case rnemdPxScale :
657     c = 1 - targetFlux_ / Pcx;
658     a000 = Kcy;
659     a110 = Kcz;
660     c0 = Kcx * c * c - Kcx - Kcy - Kcz;
661     a001 = py * py * Khy;
662     a111 = pz * pz * Khz;
663     b01 = -2.0 * Khy * py * (1.0 + py);
664     b11 = -2.0 * Khz * pz * (1.0 + pz);
665     c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz)
666     + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0);
667     break;
668     case rnemdPyScale :
669     c = 1 - targetFlux_ / Pcy;
670     a000 = Kcx;
671     a110 = Kcz;
672     c0 = Kcy * c * c - Kcx - Kcy - Kcz;
673     a001 = px * px * Khx;
674     a111 = pz * pz * Khz;
675     b01 = -2.0 * Khx * px * (1.0 + px);
676     b11 = -2.0 * Khz * pz * (1.0 + pz);
677     c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz)
678     + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0);
679     break;
680     case rnemdPzScale ://we don't really do this, do we?
681     default :
682     break;
683     }
684    
685     RealType v1 = a000 * a111 - a001 * a110;
686     RealType v2 = a000 * b01;
687     RealType v3 = a000 * b11;
688     RealType v4 = a000 * c1 - a001 * c0;
689     RealType v8 = a110 * b01;
690     RealType v10 = - b01 * c0;
691    
692     RealType u0 = v2 * v10 - v4 * v4;
693     RealType u1 = -2.0 * v3 * v4;
694     RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4;
695     RealType u3 = -2.0 * v1 * v3;
696     RealType u4 = - v1 * v1;
697     //rescale coefficients
698     RealType maxAbs = fabs(u0);
699     if (maxAbs < fabs(u1)) maxAbs = fabs(u1);
700     if (maxAbs < fabs(u2)) maxAbs = fabs(u2);
701     if (maxAbs < fabs(u3)) maxAbs = fabs(u3);
702     if (maxAbs < fabs(u4)) maxAbs = fabs(u4);
703     u0 /= maxAbs;
704     u1 /= maxAbs;
705     u2 /= maxAbs;
706     u3 /= maxAbs;
707     u4 /= maxAbs;
708     //max_element(start, end) is also available.
709     Polynomial<RealType> poly; //same as DoublePolynomial poly;
710     poly.setCoefficient(4, u4);
711     poly.setCoefficient(3, u3);
712     poly.setCoefficient(2, u2);
713     poly.setCoefficient(1, u1);
714     poly.setCoefficient(0, u0);
715     std::vector<RealType> realRoots = poly.FindRealRoots();
716    
717     std::vector<RealType>::iterator ri;
718     RealType r1, r2, alpha0;
719     std::vector<std::pair<RealType,RealType> > rps;
720     for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) {
721     r2 = *ri;
722     //check if FindRealRoots() give the right answer
723     if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) {
724     std::cerr << "WARNING! eq solvers might have mistakes!\n";
725     failRootCount_++;
726     }
727     //might not be useful w/o rescaling coefficients
728     alpha0 = -c0 - a110 * r2 * r2;
729     if (alpha0 >= 0.0) {
730     r1 = sqrt(alpha0 / a000);
731     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) < 1e-6)
732     { rps.push_back(std::make_pair(r1, r2)); }
733     if (r1 > 1e-6) { //r1 non-negative
734     r1 = -r1;
735     if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) <1e-6)
736     { rps.push_back(std::make_pair(r1, r2)); }
737     }
738     }
739     }
740     // Consider combininig together the solving pair part w/ the searching
741     // best solution part so that we don't need the pairs vector
742     if (!rps.empty()) {
743     RealType smallestDiff = HONKING_LARGE_VALUE;
744     RealType diff;
745     std::pair<RealType,RealType> bestPair = std::make_pair(1.0, 1.0);
746     std::vector<std::pair<RealType,RealType> >::iterator rpi;
747     for (rpi = rps.begin(); rpi != rps.end(); rpi++) {
748     r1 = (*rpi).first;
749     r2 = (*rpi).second;
750     switch(rnemdType_) {
751     case rnemdKineticScale :
752     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
753     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2)
754     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
755     break;
756     case rnemdPxScale :
757     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
758     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2);
759     break;
760     case rnemdPyScale :
761     diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2)
762     + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2);
763     break;
764     case rnemdPzScale :
765     default :
766     break;
767     }
768     if (diff < smallestDiff) {
769     smallestDiff = diff;
770     bestPair = *rpi;
771     }
772     }
773     #ifdef IS_MPI
774     if (worldRank == 0) {
775     #endif
776     std::cerr << "we choose r1 = " << bestPair.first
777     << " and r2 = " << bestPair.second << "\n";
778     #ifdef IS_MPI
779     }
780     #endif
781    
782     RealType x, y, z;
783     switch(rnemdType_) {
784     case rnemdKineticScale :
785     x = bestPair.first;
786     y = bestPair.first;
787     z = bestPair.second;
788     break;
789     case rnemdPxScale :
790     x = c;
791     y = bestPair.first;
792     z = bestPair.second;
793     break;
794     case rnemdPyScale :
795     x = bestPair.first;
796     y = c;
797     z = bestPair.second;
798     break;
799     case rnemdPzScale :
800     default :
801     break;
802     }
803     std::vector<StuntDouble*>::iterator sdi;
804     Vector3d vel;
805     for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) {
806     vel = (*sdi)->getVel();
807     vel.x() *= x;
808     vel.y() *= y;
809     vel.z() *= z;
810     (*sdi)->setVel(vel);
811     }
812     //convert to hotBin coefficient
813     x = 1.0 + px * (1.0 - x);
814     y = 1.0 + py * (1.0 - y);
815     z = 1.0 + pz * (1.0 - z);
816     for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) {
817     vel = (*sdi)->getVel();
818     vel.x() *= x;
819     vel.y() *= y;
820     vel.z() *= z;
821     (*sdi)->setVel(vel);
822     }
823     exchangeSum_ += targetFlux_;
824     //we may want to check whether the exchange has been successful
825     } else {
826     std::cerr << "exchange NOT performed!\n";
827     failTrialCount_++;
828     }
829    
830     }
831    
832     void RNEMD::doRNEMD() {
833    
834     switch(rnemdType_) {
835     case rnemdKineticScale :
836     case rnemdPxScale :
837     case rnemdPyScale :
838     case rnemdPzScale :
839     doScale();
840     break;
841     case rnemdKineticSwap :
842     case rnemdPx :
843     case rnemdPy :
844     case rnemdPz :
845     doSwap();
846     break;
847     case rnemdUnknown :
848     default :
849     break;
850     }
851     }
852    
853     void RNEMD::collectData() {
854    
855     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
856     Mat3x3d hmat = currentSnap_->getHmat();
857    
858     seleMan_.setSelectionSet(evaluator_.evaluate());
859    
860     int selei;
861     StuntDouble* sd;
862     int idx;
863    
864     for (sd = seleMan_.beginSelected(selei); sd != NULL;
865     sd = seleMan_.nextSelected(selei)) {
866 skuang 1338
867     idx = sd->getLocalIndex();
868    
869     Vector3d pos = sd->getPos();
870    
871     // wrap the stuntdouble's position back into the box:
872    
873     if (usePeriodicBoundaryConditions_)
874     currentSnap_->wrapVector(pos);
875    
876     // which bin is this stuntdouble in?
877     // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)]
878    
879 skuang 1368 int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_;
880    
881     if (rnemdLogWidth_ == midBin_ + 1)
882     if (binNo > midBin_)
883     binNo = nBins_ - binNo;
884    
885 skuang 1338 RealType mass = sd->getMass();
886     Vector3d vel = sd->getVel();
887     RealType value;
888 skuang 1368 RealType xVal, yVal, zVal;
889 skuang 1338
890     switch(rnemdType_) {
891 skuang 1368 case rnemdKineticSwap :
892     case rnemdKineticScale :
893 skuang 1338
894     value = mass * (vel[0]*vel[0] + vel[1]*vel[1] +
895     vel[2]*vel[2]);
896    
897 skuang 1368 valueCount_[binNo] += 3;
898 skuang 1338 if (sd->isDirectional()) {
899     Vector3d angMom = sd->getJ();
900     Mat3x3d I = sd->getI();
901    
902     if (sd->isLinear()) {
903     int i = sd->linearAxis();
904     int j = (i + 1) % 3;
905     int k = (i + 2) % 3;
906     value += angMom[j] * angMom[j] / I(j, j) +
907     angMom[k] * angMom[k] / I(k, k);
908 gezelter 1339
909 skuang 1368 valueCount_[binNo] +=2;
910 gezelter 1339
911 skuang 1341 } else {
912 skuang 1338 value += angMom[0]*angMom[0]/I(0, 0)
913     + angMom[1]*angMom[1]/I(1, 1)
914     + angMom[2]*angMom[2]/I(2, 2);
915 skuang 1368 valueCount_[binNo] +=3;
916 skuang 1338 }
917     }
918 gezelter 1390 value = value / PhysicalConstants::energyConvert / PhysicalConstants::kb;
919 gezelter 1350
920 skuang 1338 break;
921     case rnemdPx :
922 skuang 1368 case rnemdPxScale :
923 skuang 1338 value = mass * vel[0];
924 skuang 1368 valueCount_[binNo]++;
925 gezelter 1390 xVal = mass * vel.x() * vel.x() / PhysicalConstants::energyConvert
926     / PhysicalConstants::kb;
927     yVal = mass * vel.y() * vel.y() / PhysicalConstants::energyConvert
928     / PhysicalConstants::kb;
929     zVal = mass * vel.z() * vel.z() / PhysicalConstants::energyConvert
930     / PhysicalConstants::kb;
931 skuang 1368 xTempHist_[binNo] += xVal;
932     yTempHist_[binNo] += yVal;
933     zTempHist_[binNo] += zVal;
934 skuang 1338 break;
935     case rnemdPy :
936 skuang 1368 case rnemdPyScale :
937 skuang 1338 value = mass * vel[1];
938 skuang 1368 valueCount_[binNo]++;
939 skuang 1338 break;
940     case rnemdPz :
941 skuang 1368 case rnemdPzScale :
942 skuang 1338 value = mass * vel[2];
943 skuang 1368 valueCount_[binNo]++;
944 skuang 1338 break;
945     case rnemdUnknown :
946     default :
947     break;
948     }
949 skuang 1368 valueHist_[binNo] += value;
950 skuang 1338 }
951 gezelter 1350
952 skuang 1368 }
953    
954     void RNEMD::getStarted() {
955     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
956     Stats& stat = currentSnap_->statData;
957     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
958     }
959    
960     void RNEMD::getStatus() {
961    
962     Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot();
963     Stats& stat = currentSnap_->statData;
964     RealType time = currentSnap_->getTime();
965    
966     stat[Stats::RNEMD_EXCHANGE_TOTAL] = exchangeSum_;
967     //or to be more meaningful, define another item as exchangeSum_ / time
968    
969    
970 gezelter 1350 #ifdef IS_MPI
971    
972     // all processors have the same number of bins, and STL vectors pack their
973     // arrays, so in theory, this should be safe:
974    
975 skuang 1368 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueHist_[0],
976     rnemdLogWidth_, MPI::REALTYPE, MPI::SUM);
977     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &valueCount_[0],
978     rnemdLogWidth_, MPI::INT, MPI::SUM);
979 gezelter 1350
980     // If we're the root node, should we print out the results
981     int worldRank = MPI::COMM_WORLD.Get_rank();
982     if (worldRank == 0) {
983     #endif
984 skuang 1368 int j;
985     rnemdLog_ << time;
986     for (j = 0; j < rnemdLogWidth_; j++) {
987     rnemdLog_ << "\t" << valueHist_[j] / (RealType)valueCount_[j];
988     valueHist_[j] = 0.0;
989     }
990     rnemdLog_ << "\n";
991     if (rnemdType_ == rnemdPx || rnemdType_ == rnemdPxScale ) {
992     xTempLog_ << time;
993     for (j = 0; j < rnemdLogWidth_; j++) {
994     xTempLog_ << "\t" << xTempHist_[j] / (RealType)valueCount_[j];
995     xTempHist_[j] = 0.0;
996     }
997     xTempLog_ << "\n";
998     yTempLog_ << time;
999     for (j = 0; j < rnemdLogWidth_; j++) {
1000     yTempLog_ << "\t" << yTempHist_[j] / (RealType)valueCount_[j];
1001     yTempHist_[j] = 0.0;
1002     }
1003     yTempLog_ << "\n";
1004     zTempLog_ << time;
1005     for (j = 0; j < rnemdLogWidth_; j++) {
1006     zTempLog_ << "\t" << zTempHist_[j] / (RealType)valueCount_[j];
1007     zTempHist_[j] = 0.0;
1008     }
1009     zTempLog_ << "\n";
1010     }
1011     for (j = 0; j < rnemdLogWidth_; j++) valueCount_[j] = 0;
1012 gezelter 1350 #ifdef IS_MPI
1013 gezelter 1390 }
1014 gezelter 1350 #endif
1015 gezelter 1390
1016    
1017 gezelter 1334 }
1018 skuang 1368
1019 skuang 1338 }