1 |
gezelter |
1032 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
1032 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
1032 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
1032 |
*/ |
41 |
|
|
|
42 |
|
|
#include "brains/SimInfo.hpp" |
43 |
|
|
#include "brains/Thermo.hpp" |
44 |
|
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
|
#include "integrators/NgammaT.hpp" |
46 |
|
|
#include "primitives/Molecule.hpp" |
47 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
48 |
gezelter |
1032 |
#include "utils/simError.h" |
49 |
|
|
|
50 |
gezelter |
1390 |
namespace OpenMD { |
51 |
gezelter |
1032 |
NgammaT::NgammaT(SimInfo* info) : NPT(info) { |
52 |
|
|
Globals* simParams = info_->getSimParams(); |
53 |
|
|
if (!simParams->haveSurfaceTension()) { |
54 |
|
|
sprintf(painCave.errMsg, |
55 |
|
|
"If you use the NgammaT integrator, you must set a surface tension.\n"); |
56 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
57 |
gezelter |
1032 |
painCave.isFatal = 1; |
58 |
|
|
simError(); |
59 |
|
|
} else { |
60 |
gezelter |
1390 |
surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; |
61 |
gezelter |
1032 |
} |
62 |
|
|
|
63 |
|
|
} |
64 |
|
|
void NgammaT::evolveEtaA() { |
65 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
66 |
|
|
RealType hz = hmat(2, 2); |
67 |
|
|
RealType Axy = hmat(0,0) * hmat(1, 1); |
68 |
gezelter |
1390 |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
69 |
|
|
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
70 |
gezelter |
1032 |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
71 |
|
|
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
72 |
|
|
eta(2,2) = 0.0; |
73 |
|
|
oldEta = eta; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
void NgammaT::evolveEtaB() { |
77 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
78 |
|
|
RealType hz = hmat(2, 2); |
79 |
|
|
RealType Axy = hmat(0,0) * hmat(1, 1); |
80 |
|
|
prevEta = eta; |
81 |
gezelter |
1390 |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
82 |
|
|
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
83 |
gezelter |
1032 |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
84 |
|
|
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
85 |
|
|
eta(2,2) = 0.0; |
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
void NgammaT::calcVelScale(){ |
89 |
|
|
|
90 |
|
|
for (int i = 0; i < 3; i++ ) { |
91 |
|
|
for (int j = 0; j < 3; j++ ) { |
92 |
|
|
vScale(i, j) = eta(i, j); |
93 |
|
|
|
94 |
|
|
if (i == j) { |
95 |
|
|
vScale(i, j) += chi; |
96 |
|
|
} |
97 |
|
|
} |
98 |
|
|
} |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
void NgammaT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
102 |
|
|
sc = vScale * vel; |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
void NgammaT::getVelScaleB(Vector3d& sc, int index ) { |
106 |
|
|
sc = vScale * oldVel[index]; |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
void NgammaT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
110 |
|
|
|
111 |
|
|
/**@todo */ |
112 |
|
|
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
113 |
|
|
sc = eta * rj; |
114 |
|
|
} |
115 |
|
|
|
116 |
|
|
void NgammaT::scaleSimBox(){ |
117 |
|
|
Mat3x3d scaleMat; |
118 |
|
|
|
119 |
|
|
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
120 |
|
|
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
121 |
|
|
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
122 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
123 |
|
|
hmat = hmat *scaleMat; |
124 |
|
|
currentSnapshot_->setHmat(hmat); |
125 |
|
|
|
126 |
|
|
} |
127 |
|
|
|
128 |
|
|
bool NgammaT::etaConverged() { |
129 |
|
|
int i; |
130 |
|
|
RealType diffEta, sumEta; |
131 |
|
|
|
132 |
|
|
sumEta = 0; |
133 |
|
|
for(i = 0; i < 3; i++) { |
134 |
|
|
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
135 |
|
|
} |
136 |
|
|
|
137 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
138 |
|
|
|
139 |
|
|
return ( diffEta <= etaTolerance ); |
140 |
|
|
} |
141 |
|
|
|
142 |
|
|
RealType NgammaT::calcConservedQuantity(){ |
143 |
|
|
|
144 |
|
|
chi= currentSnapshot_->getChi(); |
145 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
146 |
|
|
loadEta(); |
147 |
|
|
|
148 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
149 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
150 |
|
|
// orientational degrees of freedom: |
151 |
gezelter |
1390 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
152 |
gezelter |
1032 |
|
153 |
|
|
// fkBT is used because the thermostat operates on more degrees of freedom |
154 |
|
|
// than the barostat (when there are particles with orientational degrees |
155 |
|
|
// of freedom). |
156 |
gezelter |
1390 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
157 |
gezelter |
1032 |
|
158 |
|
|
|
159 |
|
|
RealType totalEnergy = thermo.getTotalE(); |
160 |
|
|
|
161 |
gezelter |
1390 |
RealType thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); |
162 |
gezelter |
1032 |
|
163 |
gezelter |
1390 |
RealType thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
164 |
gezelter |
1032 |
|
165 |
|
|
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
166 |
|
|
RealType trEta = tmp.trace(); |
167 |
|
|
|
168 |
gezelter |
1390 |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
169 |
gezelter |
1032 |
|
170 |
gezelter |
1390 |
RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
171 |
gezelter |
1032 |
|
172 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
173 |
|
|
RealType hz = hmat(2, 2); |
174 |
|
|
RealType area = hmat(0,0) * hmat(1, 1); |
175 |
|
|
|
176 |
|
|
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
177 |
gezelter |
1390 |
barostat_kinetic + barostat_potential - surfaceTension * area/ PhysicalConstants::energyConvert; |
178 |
gezelter |
1032 |
|
179 |
|
|
return conservedQuantity; |
180 |
|
|
|
181 |
|
|
} |
182 |
|
|
|
183 |
|
|
void NgammaT::loadEta() { |
184 |
|
|
eta= currentSnapshot_->getEta(); |
185 |
|
|
|
186 |
|
|
//if (!eta.isDiagonal()) { |
187 |
|
|
// sprintf( painCave.errMsg, |
188 |
|
|
// "NgammaT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
189 |
|
|
// painCave.isFatal = 1; |
190 |
|
|
// simError(); |
191 |
|
|
//} |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
void NgammaT::saveEta() { |
195 |
|
|
currentSnapshot_->setEta(eta); |
196 |
|
|
} |
197 |
|
|
|
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
|