1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "integrators/NVT.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "utils/PhysicalConstants.hpp" |
47 |
|
48 |
namespace OpenMD { |
49 |
|
50 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
51 |
|
52 |
Globals* simParams = info_->getSimParams(); |
53 |
|
54 |
if (!simParams->getUseIntialExtendedSystemState()) { |
55 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
56 |
snap->setThermostat(make_pair(0.0, 0.0)); |
57 |
} |
58 |
|
59 |
if (!simParams->haveTargetTemp()) { |
60 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
61 |
painCave.isFatal = 1; |
62 |
painCave.severity = OPENMD_ERROR; |
63 |
simError(); |
64 |
} else { |
65 |
targetTemp_ = simParams->getTargetTemp(); |
66 |
} |
67 |
|
68 |
// We must set tauThermostat. |
69 |
|
70 |
if (!simParams->haveTauThermostat()) { |
71 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
72 |
"\tintegrator, you must set tauThermostat.\n"); |
73 |
|
74 |
painCave.severity = OPENMD_ERROR; |
75 |
painCave.isFatal = 1; |
76 |
simError(); |
77 |
} else { |
78 |
tauThermostat_ = simParams->getTauThermostat(); |
79 |
} |
80 |
|
81 |
updateSizes(); |
82 |
} |
83 |
|
84 |
void NVT::doUpdateSizes() { |
85 |
oldVel_.resize(info_->getNIntegrableObjects()); |
86 |
oldJi_.resize(info_->getNIntegrableObjects()); |
87 |
} |
88 |
|
89 |
void NVT::moveA() { |
90 |
SimInfo::MoleculeIterator i; |
91 |
Molecule::IntegrableObjectIterator j; |
92 |
Molecule* mol; |
93 |
StuntDouble* sd; |
94 |
Vector3d Tb; |
95 |
Vector3d ji; |
96 |
RealType mass; |
97 |
Vector3d vel; |
98 |
Vector3d pos; |
99 |
Vector3d frc; |
100 |
|
101 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
102 |
|
103 |
// We need the temperature at time = t for the chi update below: |
104 |
|
105 |
RealType instTemp = thermo.getTemperature(); |
106 |
|
107 |
for (mol = info_->beginMolecule(i); mol != NULL; |
108 |
mol = info_->nextMolecule(i)) { |
109 |
|
110 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
111 |
sd = mol->nextIntegrableObject(j)) { |
112 |
|
113 |
vel = sd->getVel(); |
114 |
pos = sd->getPos(); |
115 |
frc = sd->getFrc(); |
116 |
|
117 |
mass = sd->getMass(); |
118 |
|
119 |
// velocity half step (use chi from previous step here): |
120 |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc |
121 |
- dt2*thermostat.first*vel; |
122 |
|
123 |
// position whole step |
124 |
pos += dt * vel; |
125 |
|
126 |
sd->setVel(vel); |
127 |
sd->setPos(pos); |
128 |
|
129 |
if (sd->isDirectional()) { |
130 |
|
131 |
//convert the torque to body frame |
132 |
Tb = sd->lab2Body(sd->getTrq()); |
133 |
|
134 |
// get the angular momentum, and propagate a half step |
135 |
|
136 |
ji = sd->getJ(); |
137 |
|
138 |
ji += dt2*PhysicalConstants::energyConvert*Tb |
139 |
- dt2*thermostat.first *ji; |
140 |
|
141 |
rotAlgo_->rotate(sd, ji, dt); |
142 |
|
143 |
sd->setJ(ji); |
144 |
} |
145 |
} |
146 |
|
147 |
} |
148 |
|
149 |
flucQ_->moveA(); |
150 |
rattle_->constraintA(); |
151 |
|
152 |
// Finally, evolve chi a half step (just like a velocity) using |
153 |
// temperature at time t, not time t+dt/2 |
154 |
|
155 |
thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0) |
156 |
/ (tauThermostat_ * tauThermostat_); |
157 |
thermostat.second += thermostat.first * dt2; |
158 |
|
159 |
snap->setThermostat(thermostat); |
160 |
} |
161 |
|
162 |
void NVT::moveB() { |
163 |
SimInfo::MoleculeIterator i; |
164 |
Molecule::IntegrableObjectIterator j; |
165 |
Molecule* mol; |
166 |
StuntDouble* sd; |
167 |
|
168 |
Vector3d Tb; |
169 |
Vector3d ji; |
170 |
Vector3d vel; |
171 |
Vector3d frc; |
172 |
RealType mass; |
173 |
RealType instTemp; |
174 |
int index; |
175 |
// Set things up for the iteration: |
176 |
|
177 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
178 |
RealType oldChi = thermostat.first; |
179 |
RealType prevChi; |
180 |
|
181 |
index = 0; |
182 |
for (mol = info_->beginMolecule(i); mol != NULL; |
183 |
mol = info_->nextMolecule(i)) { |
184 |
|
185 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
186 |
sd = mol->nextIntegrableObject(j)) { |
187 |
|
188 |
oldVel_[index] = sd->getVel(); |
189 |
|
190 |
if (sd->isDirectional()) |
191 |
oldJi_[index] = sd->getJ(); |
192 |
|
193 |
++index; |
194 |
} |
195 |
} |
196 |
|
197 |
// do the iteration: |
198 |
|
199 |
for(int k = 0; k < maxIterNum_; k++) { |
200 |
index = 0; |
201 |
instTemp = thermo.getTemperature(); |
202 |
|
203 |
// evolve chi another half step using the temperature at t + dt/2 |
204 |
|
205 |
prevChi = thermostat.first; |
206 |
thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) |
207 |
/ (tauThermostat_ * tauThermostat_); |
208 |
|
209 |
for (mol = info_->beginMolecule(i); mol != NULL; |
210 |
mol = info_->nextMolecule(i)) { |
211 |
|
212 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
213 |
sd = mol->nextIntegrableObject(j)) { |
214 |
|
215 |
frc = sd->getFrc(); |
216 |
vel = sd->getVel(); |
217 |
|
218 |
mass = sd->getMass(); |
219 |
|
220 |
// velocity half step |
221 |
|
222 |
vel = oldVel_[index] |
223 |
+ dt2/mass*PhysicalConstants::energyConvert * frc |
224 |
- dt2*thermostat.first*oldVel_[index]; |
225 |
|
226 |
sd->setVel(vel); |
227 |
|
228 |
if (sd->isDirectional()) { |
229 |
|
230 |
// get and convert the torque to body frame |
231 |
|
232 |
Tb = sd->lab2Body(sd->getTrq()); |
233 |
|
234 |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb |
235 |
- dt2*thermostat.first *oldJi_[index]; |
236 |
|
237 |
sd->setJ(ji); |
238 |
} |
239 |
|
240 |
|
241 |
++index; |
242 |
} |
243 |
} |
244 |
|
245 |
rattle_->constraintB(); |
246 |
|
247 |
if (fabs(prevChi - thermostat.first) <= chiTolerance_) |
248 |
break; |
249 |
|
250 |
} |
251 |
|
252 |
flucQ_->moveB(); |
253 |
|
254 |
thermostat.second += dt2 * thermostat.first; |
255 |
snap->setThermostat(thermostat); |
256 |
} |
257 |
|
258 |
void NVT::resetIntegrator() { |
259 |
snap->setThermostat(make_pair(0.0, 0.0)); |
260 |
} |
261 |
|
262 |
RealType NVT::calcConservedQuantity() { |
263 |
|
264 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
265 |
RealType conservedQuantity; |
266 |
RealType fkBT; |
267 |
RealType Energy; |
268 |
RealType thermostat_kinetic; |
269 |
RealType thermostat_potential; |
270 |
|
271 |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
272 |
|
273 |
Energy = thermo.getTotalEnergy(); |
274 |
|
275 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert); |
276 |
|
277 |
thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert; |
278 |
|
279 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
280 |
|
281 |
return conservedQuantity; |
282 |
} |
283 |
|
284 |
|
285 |
}//end namespace OpenMD |