ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NVT.cpp
Revision: 1764
Committed: Tue Jul 3 18:32:27 2012 UTC (12 years, 9 months ago) by gezelter
File size: 8241 byte(s)
Log Message:
Refactored Snapshot and Stats to use the Accumulator classes.  Collected
a number of methods into Thermo that belonged there.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "integrators/NVT.hpp"
44 #include "primitives/Molecule.hpp"
45 #include "utils/simError.h"
46 #include "utils/PhysicalConstants.hpp"
47
48 namespace OpenMD {
49
50 NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
51
52 Globals* simParams = info_->getSimParams();
53
54 if (!simParams->getUseIntialExtendedSystemState()) {
55 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
56 snap->setThermostat(make_pair(0.0, 0.0));
57 }
58
59 if (!simParams->haveTargetTemp()) {
60 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61 painCave.isFatal = 1;
62 painCave.severity = OPENMD_ERROR;
63 simError();
64 } else {
65 targetTemp_ = simParams->getTargetTemp();
66 }
67
68 // We must set tauThermostat.
69
70 if (!simParams->haveTauThermostat()) {
71 sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 "\tintegrator, you must set tauThermostat.\n");
73
74 painCave.severity = OPENMD_ERROR;
75 painCave.isFatal = 1;
76 simError();
77 } else {
78 tauThermostat_ = simParams->getTauThermostat();
79 }
80
81 updateSizes();
82 }
83
84 void NVT::doUpdateSizes() {
85 oldVel_.resize(info_->getNIntegrableObjects());
86 oldJi_.resize(info_->getNIntegrableObjects());
87 }
88
89 void NVT::moveA() {
90 SimInfo::MoleculeIterator i;
91 Molecule::IntegrableObjectIterator j;
92 Molecule* mol;
93 StuntDouble* sd;
94 Vector3d Tb;
95 Vector3d ji;
96 RealType mass;
97 Vector3d vel;
98 Vector3d pos;
99 Vector3d frc;
100
101 pair<RealType, RealType> thermostat = snap->getThermostat();
102
103 // We need the temperature at time = t for the chi update below:
104
105 RealType instTemp = thermo.getTemperature();
106
107 for (mol = info_->beginMolecule(i); mol != NULL;
108 mol = info_->nextMolecule(i)) {
109
110 for (sd = mol->beginIntegrableObject(j); sd != NULL;
111 sd = mol->nextIntegrableObject(j)) {
112
113 vel = sd->getVel();
114 pos = sd->getPos();
115 frc = sd->getFrc();
116
117 mass = sd->getMass();
118
119 // velocity half step (use chi from previous step here):
120 vel += dt2 *PhysicalConstants::energyConvert/mass*frc
121 - dt2*thermostat.first*vel;
122
123 // position whole step
124 pos += dt * vel;
125
126 sd->setVel(vel);
127 sd->setPos(pos);
128
129 if (sd->isDirectional()) {
130
131 //convert the torque to body frame
132 Tb = sd->lab2Body(sd->getTrq());
133
134 // get the angular momentum, and propagate a half step
135
136 ji = sd->getJ();
137
138 ji += dt2*PhysicalConstants::energyConvert*Tb
139 - dt2*thermostat.first *ji;
140
141 rotAlgo_->rotate(sd, ji, dt);
142
143 sd->setJ(ji);
144 }
145 }
146
147 }
148
149 flucQ_->moveA();
150 rattle_->constraintA();
151
152 // Finally, evolve chi a half step (just like a velocity) using
153 // temperature at time t, not time t+dt/2
154
155 thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0)
156 / (tauThermostat_ * tauThermostat_);
157 thermostat.second += thermostat.first * dt2;
158
159 snap->setThermostat(thermostat);
160 }
161
162 void NVT::moveB() {
163 SimInfo::MoleculeIterator i;
164 Molecule::IntegrableObjectIterator j;
165 Molecule* mol;
166 StuntDouble* sd;
167
168 Vector3d Tb;
169 Vector3d ji;
170 Vector3d vel;
171 Vector3d frc;
172 RealType mass;
173 RealType instTemp;
174 int index;
175 // Set things up for the iteration:
176
177 pair<RealType, RealType> thermostat = snap->getThermostat();
178 RealType oldChi = thermostat.first;
179 RealType prevChi;
180
181 index = 0;
182 for (mol = info_->beginMolecule(i); mol != NULL;
183 mol = info_->nextMolecule(i)) {
184
185 for (sd = mol->beginIntegrableObject(j); sd != NULL;
186 sd = mol->nextIntegrableObject(j)) {
187
188 oldVel_[index] = sd->getVel();
189
190 if (sd->isDirectional())
191 oldJi_[index] = sd->getJ();
192
193 ++index;
194 }
195 }
196
197 // do the iteration:
198
199 for(int k = 0; k < maxIterNum_; k++) {
200 index = 0;
201 instTemp = thermo.getTemperature();
202
203 // evolve chi another half step using the temperature at t + dt/2
204
205 prevChi = thermostat.first;
206 thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0)
207 / (tauThermostat_ * tauThermostat_);
208
209 for (mol = info_->beginMolecule(i); mol != NULL;
210 mol = info_->nextMolecule(i)) {
211
212 for (sd = mol->beginIntegrableObject(j); sd != NULL;
213 sd = mol->nextIntegrableObject(j)) {
214
215 frc = sd->getFrc();
216 vel = sd->getVel();
217
218 mass = sd->getMass();
219
220 // velocity half step
221
222 vel = oldVel_[index]
223 + dt2/mass*PhysicalConstants::energyConvert * frc
224 - dt2*thermostat.first*oldVel_[index];
225
226 sd->setVel(vel);
227
228 if (sd->isDirectional()) {
229
230 // get and convert the torque to body frame
231
232 Tb = sd->lab2Body(sd->getTrq());
233
234 ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb
235 - dt2*thermostat.first *oldJi_[index];
236
237 sd->setJ(ji);
238 }
239
240
241 ++index;
242 }
243 }
244
245 rattle_->constraintB();
246
247 if (fabs(prevChi - thermostat.first) <= chiTolerance_)
248 break;
249
250 }
251
252 flucQ_->moveB();
253
254 thermostat.second += dt2 * thermostat.first;
255 snap->setThermostat(thermostat);
256 }
257
258 void NVT::resetIntegrator() {
259 snap->setThermostat(make_pair(0.0, 0.0));
260 }
261
262 RealType NVT::calcConservedQuantity() {
263
264 pair<RealType, RealType> thermostat = snap->getThermostat();
265 RealType conservedQuantity;
266 RealType fkBT;
267 RealType Energy;
268 RealType thermostat_kinetic;
269 RealType thermostat_potential;
270
271 fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
272
273 Energy = thermo.getTotalEnergy();
274
275 thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert);
276
277 thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert;
278
279 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
280
281 return conservedQuantity;
282 }
283
284
285 }//end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date