| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include "integrators/NVT.hpp" |
| 44 |
#include "primitives/Molecule.hpp" |
| 45 |
#include "utils/simError.h" |
| 46 |
#include "utils/PhysicalConstants.hpp" |
| 47 |
|
| 48 |
namespace OpenMD { |
| 49 |
|
| 50 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
| 51 |
|
| 52 |
Globals* simParams = info_->getSimParams(); |
| 53 |
|
| 54 |
if (!simParams->getUseIntialExtendedSystemState()) { |
| 55 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 56 |
snap->setThermostat(make_pair(0.0, 0.0)); |
| 57 |
} |
| 58 |
|
| 59 |
if (!simParams->haveTargetTemp()) { |
| 60 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
| 61 |
painCave.isFatal = 1; |
| 62 |
painCave.severity = OPENMD_ERROR; |
| 63 |
simError(); |
| 64 |
} else { |
| 65 |
targetTemp_ = simParams->getTargetTemp(); |
| 66 |
} |
| 67 |
|
| 68 |
// We must set tauThermostat. |
| 69 |
|
| 70 |
if (!simParams->haveTauThermostat()) { |
| 71 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
| 72 |
"\tintegrator, you must set tauThermostat.\n"); |
| 73 |
|
| 74 |
painCave.severity = OPENMD_ERROR; |
| 75 |
painCave.isFatal = 1; |
| 76 |
simError(); |
| 77 |
} else { |
| 78 |
tauThermostat_ = simParams->getTauThermostat(); |
| 79 |
} |
| 80 |
|
| 81 |
updateSizes(); |
| 82 |
} |
| 83 |
|
| 84 |
void NVT::doUpdateSizes() { |
| 85 |
oldVel_.resize(info_->getNIntegrableObjects()); |
| 86 |
oldJi_.resize(info_->getNIntegrableObjects()); |
| 87 |
} |
| 88 |
|
| 89 |
void NVT::moveA() { |
| 90 |
SimInfo::MoleculeIterator i; |
| 91 |
Molecule::IntegrableObjectIterator j; |
| 92 |
Molecule* mol; |
| 93 |
StuntDouble* sd; |
| 94 |
Vector3d Tb; |
| 95 |
Vector3d ji; |
| 96 |
RealType mass; |
| 97 |
Vector3d vel; |
| 98 |
Vector3d pos; |
| 99 |
Vector3d frc; |
| 100 |
|
| 101 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
| 102 |
|
| 103 |
// We need the temperature at time = t for the chi update below: |
| 104 |
|
| 105 |
RealType instTemp = thermo.getTemperature(); |
| 106 |
|
| 107 |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 108 |
mol = info_->nextMolecule(i)) { |
| 109 |
|
| 110 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
| 111 |
sd = mol->nextIntegrableObject(j)) { |
| 112 |
|
| 113 |
vel = sd->getVel(); |
| 114 |
pos = sd->getPos(); |
| 115 |
frc = sd->getFrc(); |
| 116 |
|
| 117 |
mass = sd->getMass(); |
| 118 |
|
| 119 |
// velocity half step (use chi from previous step here): |
| 120 |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc |
| 121 |
- dt2*thermostat.first*vel; |
| 122 |
|
| 123 |
// position whole step |
| 124 |
pos += dt * vel; |
| 125 |
|
| 126 |
sd->setVel(vel); |
| 127 |
sd->setPos(pos); |
| 128 |
|
| 129 |
if (sd->isDirectional()) { |
| 130 |
|
| 131 |
//convert the torque to body frame |
| 132 |
Tb = sd->lab2Body(sd->getTrq()); |
| 133 |
|
| 134 |
// get the angular momentum, and propagate a half step |
| 135 |
|
| 136 |
ji = sd->getJ(); |
| 137 |
|
| 138 |
ji += dt2*PhysicalConstants::energyConvert*Tb |
| 139 |
- dt2*thermostat.first *ji; |
| 140 |
|
| 141 |
rotAlgo_->rotate(sd, ji, dt); |
| 142 |
|
| 143 |
sd->setJ(ji); |
| 144 |
} |
| 145 |
} |
| 146 |
|
| 147 |
} |
| 148 |
|
| 149 |
flucQ_->moveA(); |
| 150 |
rattle_->constraintA(); |
| 151 |
|
| 152 |
// Finally, evolve chi a half step (just like a velocity) using |
| 153 |
// temperature at time t, not time t+dt/2 |
| 154 |
|
| 155 |
thermostat.first += dt2 * (instTemp / targetTemp_ - 1.0) |
| 156 |
/ (tauThermostat_ * tauThermostat_); |
| 157 |
thermostat.second += thermostat.first * dt2; |
| 158 |
|
| 159 |
snap->setThermostat(thermostat); |
| 160 |
} |
| 161 |
|
| 162 |
void NVT::moveB() { |
| 163 |
SimInfo::MoleculeIterator i; |
| 164 |
Molecule::IntegrableObjectIterator j; |
| 165 |
Molecule* mol; |
| 166 |
StuntDouble* sd; |
| 167 |
|
| 168 |
Vector3d Tb; |
| 169 |
Vector3d ji; |
| 170 |
Vector3d vel; |
| 171 |
Vector3d frc; |
| 172 |
RealType mass; |
| 173 |
RealType instTemp; |
| 174 |
int index; |
| 175 |
// Set things up for the iteration: |
| 176 |
|
| 177 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
| 178 |
RealType oldChi = thermostat.first; |
| 179 |
RealType prevChi; |
| 180 |
|
| 181 |
index = 0; |
| 182 |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 183 |
mol = info_->nextMolecule(i)) { |
| 184 |
|
| 185 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
| 186 |
sd = mol->nextIntegrableObject(j)) { |
| 187 |
|
| 188 |
oldVel_[index] = sd->getVel(); |
| 189 |
|
| 190 |
if (sd->isDirectional()) |
| 191 |
oldJi_[index] = sd->getJ(); |
| 192 |
|
| 193 |
++index; |
| 194 |
} |
| 195 |
} |
| 196 |
|
| 197 |
// do the iteration: |
| 198 |
|
| 199 |
for(int k = 0; k < maxIterNum_; k++) { |
| 200 |
index = 0; |
| 201 |
instTemp = thermo.getTemperature(); |
| 202 |
|
| 203 |
// evolve chi another half step using the temperature at t + dt/2 |
| 204 |
|
| 205 |
prevChi = thermostat.first; |
| 206 |
thermostat.first = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) |
| 207 |
/ (tauThermostat_ * tauThermostat_); |
| 208 |
|
| 209 |
for (mol = info_->beginMolecule(i); mol != NULL; |
| 210 |
mol = info_->nextMolecule(i)) { |
| 211 |
|
| 212 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
| 213 |
sd = mol->nextIntegrableObject(j)) { |
| 214 |
|
| 215 |
frc = sd->getFrc(); |
| 216 |
vel = sd->getVel(); |
| 217 |
|
| 218 |
mass = sd->getMass(); |
| 219 |
|
| 220 |
// velocity half step |
| 221 |
|
| 222 |
vel = oldVel_[index] |
| 223 |
+ dt2/mass*PhysicalConstants::energyConvert * frc |
| 224 |
- dt2*thermostat.first*oldVel_[index]; |
| 225 |
|
| 226 |
sd->setVel(vel); |
| 227 |
|
| 228 |
if (sd->isDirectional()) { |
| 229 |
|
| 230 |
// get and convert the torque to body frame |
| 231 |
|
| 232 |
Tb = sd->lab2Body(sd->getTrq()); |
| 233 |
|
| 234 |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb |
| 235 |
- dt2*thermostat.first *oldJi_[index]; |
| 236 |
|
| 237 |
sd->setJ(ji); |
| 238 |
} |
| 239 |
|
| 240 |
|
| 241 |
++index; |
| 242 |
} |
| 243 |
} |
| 244 |
|
| 245 |
rattle_->constraintB(); |
| 246 |
|
| 247 |
if (fabs(prevChi - thermostat.first) <= chiTolerance_) |
| 248 |
break; |
| 249 |
|
| 250 |
} |
| 251 |
|
| 252 |
flucQ_->moveB(); |
| 253 |
|
| 254 |
thermostat.second += dt2 * thermostat.first; |
| 255 |
snap->setThermostat(thermostat); |
| 256 |
} |
| 257 |
|
| 258 |
void NVT::resetIntegrator() { |
| 259 |
snap->setThermostat(make_pair(0.0, 0.0)); |
| 260 |
} |
| 261 |
|
| 262 |
RealType NVT::calcConservedQuantity() { |
| 263 |
|
| 264 |
pair<RealType, RealType> thermostat = snap->getThermostat(); |
| 265 |
RealType conservedQuantity; |
| 266 |
RealType fkBT; |
| 267 |
RealType Energy; |
| 268 |
RealType thermostat_kinetic; |
| 269 |
RealType thermostat_potential; |
| 270 |
|
| 271 |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
| 272 |
|
| 273 |
Energy = thermo.getTotalEnergy(); |
| 274 |
|
| 275 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * thermostat.first * thermostat.first / (2.0 * PhysicalConstants::energyConvert); |
| 276 |
|
| 277 |
thermostat_potential = fkBT * thermostat.second / PhysicalConstants::energyConvert; |
| 278 |
|
| 279 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
| 280 |
|
| 281 |
return conservedQuantity; |
| 282 |
} |
| 283 |
|
| 284 |
|
| 285 |
}//end namespace OpenMD |