1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "integrators/NVT.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "utils/PhysicalConstants.hpp" |
47 |
|
48 |
namespace OpenMD { |
49 |
|
50 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
51 |
|
52 |
Globals* simParams = info_->getSimParams(); |
53 |
|
54 |
if (!simParams->getUseIntialExtendedSystemState()) { |
55 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
56 |
currSnapshot->setChi(0.0); |
57 |
currSnapshot->setIntegralOfChiDt(0.0); |
58 |
} |
59 |
|
60 |
if (!simParams->haveTargetTemp()) { |
61 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
62 |
painCave.isFatal = 1; |
63 |
painCave.severity = OPENMD_ERROR; |
64 |
simError(); |
65 |
} else { |
66 |
targetTemp_ = simParams->getTargetTemp(); |
67 |
} |
68 |
|
69 |
// We must set tauThermostat. |
70 |
|
71 |
if (!simParams->haveTauThermostat()) { |
72 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
73 |
"\tintegrator, you must set tauThermostat.\n"); |
74 |
|
75 |
painCave.severity = OPENMD_ERROR; |
76 |
painCave.isFatal = 1; |
77 |
simError(); |
78 |
} else { |
79 |
tauThermostat_ = simParams->getTauThermostat(); |
80 |
} |
81 |
|
82 |
updateSizes(); |
83 |
} |
84 |
|
85 |
void NVT::doUpdateSizes() { |
86 |
oldVel_.resize(info_->getNIntegrableObjects()); |
87 |
oldJi_.resize(info_->getNIntegrableObjects()); |
88 |
} |
89 |
void NVT::moveA() { |
90 |
SimInfo::MoleculeIterator i; |
91 |
Molecule::IntegrableObjectIterator j; |
92 |
Molecule* mol; |
93 |
StuntDouble* integrableObject; |
94 |
Vector3d Tb; |
95 |
Vector3d ji; |
96 |
RealType mass; |
97 |
Vector3d vel; |
98 |
Vector3d pos; |
99 |
Vector3d frc; |
100 |
|
101 |
RealType chi = currentSnapshot_->getChi(); |
102 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
103 |
|
104 |
// We need the temperature at time = t for the chi update below: |
105 |
|
106 |
RealType instTemp = thermo.getTemperature(); |
107 |
|
108 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
109 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
110 |
integrableObject = mol->nextIntegrableObject(j)) { |
111 |
|
112 |
vel = integrableObject->getVel(); |
113 |
pos = integrableObject->getPos(); |
114 |
frc = integrableObject->getFrc(); |
115 |
|
116 |
mass = integrableObject->getMass(); |
117 |
|
118 |
// velocity half step (use chi from previous step here): |
119 |
//vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi); |
120 |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel; |
121 |
|
122 |
// position whole step |
123 |
//pos[j] += dt * vel[j]; |
124 |
pos += dt * vel; |
125 |
|
126 |
integrableObject->setVel(vel); |
127 |
integrableObject->setPos(pos); |
128 |
|
129 |
if (integrableObject->isDirectional()) { |
130 |
|
131 |
//convert the torque to body frame |
132 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
133 |
|
134 |
// get the angular momentum, and propagate a half step |
135 |
|
136 |
ji = integrableObject->getJ(); |
137 |
|
138 |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
139 |
ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji; |
140 |
rotAlgo_->rotate(integrableObject, ji, dt); |
141 |
|
142 |
integrableObject->setJ(ji); |
143 |
} |
144 |
} |
145 |
|
146 |
} |
147 |
|
148 |
flucQ_->moveA(); |
149 |
rattle_->constraintA(); |
150 |
|
151 |
// Finally, evolve chi a half step (just like a velocity) using |
152 |
// temperature at time t, not time t+dt/2 |
153 |
|
154 |
|
155 |
chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
156 |
integralOfChidt += chi * dt2; |
157 |
|
158 |
currentSnapshot_->setChi(chi); |
159 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
160 |
} |
161 |
|
162 |
void NVT::moveB() { |
163 |
SimInfo::MoleculeIterator i; |
164 |
Molecule::IntegrableObjectIterator j; |
165 |
Molecule* mol; |
166 |
StuntDouble* integrableObject; |
167 |
|
168 |
Vector3d Tb; |
169 |
Vector3d ji; |
170 |
Vector3d vel; |
171 |
Vector3d frc; |
172 |
RealType mass; |
173 |
RealType instTemp; |
174 |
int index; |
175 |
// Set things up for the iteration: |
176 |
|
177 |
RealType chi = currentSnapshot_->getChi(); |
178 |
RealType oldChi = chi; |
179 |
RealType prevChi; |
180 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
181 |
|
182 |
index = 0; |
183 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
184 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
185 |
integrableObject = mol->nextIntegrableObject(j)) { |
186 |
|
187 |
oldVel_[index] = integrableObject->getVel(); |
188 |
|
189 |
if (integrableObject->isDirectional()) |
190 |
oldJi_[index] = integrableObject->getJ(); |
191 |
|
192 |
++index; |
193 |
} |
194 |
} |
195 |
|
196 |
// do the iteration: |
197 |
|
198 |
for(int k = 0; k < maxIterNum_; k++) { |
199 |
index = 0; |
200 |
instTemp = thermo.getTemperature(); |
201 |
|
202 |
// evolve chi another half step using the temperature at t + dt/2 |
203 |
|
204 |
prevChi = chi; |
205 |
chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
206 |
|
207 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
208 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
209 |
integrableObject = mol->nextIntegrableObject(j)) { |
210 |
|
211 |
frc = integrableObject->getFrc(); |
212 |
vel = integrableObject->getVel(); |
213 |
|
214 |
mass = integrableObject->getMass(); |
215 |
|
216 |
// velocity half step |
217 |
//for(j = 0; j < 3; j++) |
218 |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi); |
219 |
vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index]; |
220 |
|
221 |
integrableObject->setVel(vel); |
222 |
|
223 |
if (integrableObject->isDirectional()) { |
224 |
|
225 |
// get and convert the torque to body frame |
226 |
|
227 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
228 |
|
229 |
//for(j = 0; j < 3; j++) |
230 |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi); |
231 |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index]; |
232 |
|
233 |
integrableObject->setJ(ji); |
234 |
} |
235 |
|
236 |
|
237 |
++index; |
238 |
} |
239 |
} |
240 |
|
241 |
rattle_->constraintB(); |
242 |
|
243 |
if (fabs(prevChi - chi) <= chiTolerance_) |
244 |
break; |
245 |
|
246 |
} |
247 |
|
248 |
flucQ_->moveB(); |
249 |
|
250 |
integralOfChidt += dt2 * chi; |
251 |
currentSnapshot_->setChi(chi); |
252 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
253 |
} |
254 |
|
255 |
void NVT::resetIntegrator() { |
256 |
currentSnapshot_->setChi(0.0); |
257 |
currentSnapshot_->setIntegralOfChiDt(0.0); |
258 |
} |
259 |
|
260 |
RealType NVT::calcConservedQuantity() { |
261 |
|
262 |
RealType chi = currentSnapshot_->getChi(); |
263 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
264 |
RealType conservedQuantity; |
265 |
RealType fkBT; |
266 |
RealType Energy; |
267 |
RealType thermostat_kinetic; |
268 |
RealType thermostat_potential; |
269 |
|
270 |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
271 |
|
272 |
Energy = thermo.getTotalE(); |
273 |
|
274 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
275 |
|
276 |
thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert; |
277 |
|
278 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
279 |
|
280 |
return conservedQuantity; |
281 |
} |
282 |
|
283 |
|
284 |
}//end namespace OpenMD |