1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "integrators/NVT.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "utils/PhysicalConstants.hpp" |
47 |
|
48 |
namespace OpenMD { |
49 |
|
50 |
NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) { |
51 |
|
52 |
Globals* simParams = info_->getSimParams(); |
53 |
|
54 |
if (!simParams->getUseIntialExtendedSystemState()) { |
55 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
56 |
currSnapshot->setChi(0.0); |
57 |
currSnapshot->setIntegralOfChiDt(0.0); |
58 |
} |
59 |
|
60 |
if (!simParams->haveTargetTemp()) { |
61 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n"); |
62 |
painCave.isFatal = 1; |
63 |
painCave.severity = OPENMD_ERROR; |
64 |
simError(); |
65 |
} else { |
66 |
targetTemp_ = simParams->getTargetTemp(); |
67 |
} |
68 |
|
69 |
// We must set tauThermostat. |
70 |
|
71 |
if (!simParams->haveTauThermostat()) { |
72 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
73 |
"\tintegrator, you must set tauThermostat.\n"); |
74 |
|
75 |
painCave.severity = OPENMD_ERROR; |
76 |
painCave.isFatal = 1; |
77 |
simError(); |
78 |
} else { |
79 |
tauThermostat_ = simParams->getTauThermostat(); |
80 |
} |
81 |
|
82 |
update(); |
83 |
} |
84 |
|
85 |
void NVT::doUpdate() { |
86 |
oldVel_.resize(info_->getNIntegrableObjects()); |
87 |
oldJi_.resize(info_->getNIntegrableObjects()); |
88 |
} |
89 |
void NVT::moveA() { |
90 |
SimInfo::MoleculeIterator i; |
91 |
Molecule::IntegrableObjectIterator j; |
92 |
Molecule* mol; |
93 |
StuntDouble* integrableObject; |
94 |
Vector3d Tb; |
95 |
Vector3d ji; |
96 |
RealType mass; |
97 |
Vector3d vel; |
98 |
Vector3d pos; |
99 |
Vector3d frc; |
100 |
|
101 |
RealType chi = currentSnapshot_->getChi(); |
102 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
103 |
|
104 |
// We need the temperature at time = t for the chi update below: |
105 |
|
106 |
RealType instTemp = thermo.getTemperature(); |
107 |
|
108 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
109 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
110 |
integrableObject = mol->nextIntegrableObject(j)) { |
111 |
|
112 |
vel = integrableObject->getVel(); |
113 |
pos = integrableObject->getPos(); |
114 |
frc = integrableObject->getFrc(); |
115 |
|
116 |
mass = integrableObject->getMass(); |
117 |
|
118 |
// velocity half step (use chi from previous step here): |
119 |
//vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi); |
120 |
vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel; |
121 |
|
122 |
// position whole step |
123 |
//pos[j] += dt * vel[j]; |
124 |
pos += dt * vel; |
125 |
|
126 |
integrableObject->setVel(vel); |
127 |
integrableObject->setPos(pos); |
128 |
|
129 |
if (integrableObject->isDirectional()) { |
130 |
|
131 |
//convert the torque to body frame |
132 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
133 |
|
134 |
// get the angular momentum, and propagate a half step |
135 |
|
136 |
ji = integrableObject->getJ(); |
137 |
|
138 |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
139 |
ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji; |
140 |
rotAlgo->rotate(integrableObject, ji, dt); |
141 |
|
142 |
integrableObject->setJ(ji); |
143 |
} |
144 |
} |
145 |
|
146 |
} |
147 |
|
148 |
rattle->constraintA(); |
149 |
|
150 |
// Finally, evolve chi a half step (just like a velocity) using |
151 |
// temperature at time t, not time t+dt/2 |
152 |
|
153 |
|
154 |
chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
155 |
integralOfChidt += chi * dt2; |
156 |
|
157 |
currentSnapshot_->setChi(chi); |
158 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
159 |
} |
160 |
|
161 |
void NVT::moveB() { |
162 |
SimInfo::MoleculeIterator i; |
163 |
Molecule::IntegrableObjectIterator j; |
164 |
Molecule* mol; |
165 |
StuntDouble* integrableObject; |
166 |
|
167 |
Vector3d Tb; |
168 |
Vector3d ji; |
169 |
Vector3d vel; |
170 |
Vector3d frc; |
171 |
RealType mass; |
172 |
RealType instTemp; |
173 |
int index; |
174 |
// Set things up for the iteration: |
175 |
|
176 |
RealType chi = currentSnapshot_->getChi(); |
177 |
RealType oldChi = chi; |
178 |
RealType prevChi; |
179 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
180 |
|
181 |
index = 0; |
182 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
183 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
184 |
integrableObject = mol->nextIntegrableObject(j)) { |
185 |
|
186 |
oldVel_[index] = integrableObject->getVel(); |
187 |
|
188 |
if (integrableObject->isDirectional()) |
189 |
oldJi_[index] = integrableObject->getJ(); |
190 |
|
191 |
++index; |
192 |
} |
193 |
} |
194 |
|
195 |
// do the iteration: |
196 |
|
197 |
for(int k = 0; k < maxIterNum_; k++) { |
198 |
index = 0; |
199 |
instTemp = thermo.getTemperature(); |
200 |
|
201 |
// evolve chi another half step using the temperature at t + dt/2 |
202 |
|
203 |
prevChi = chi; |
204 |
chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_); |
205 |
|
206 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
207 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
208 |
integrableObject = mol->nextIntegrableObject(j)) { |
209 |
|
210 |
frc = integrableObject->getFrc(); |
211 |
vel = integrableObject->getVel(); |
212 |
|
213 |
mass = integrableObject->getMass(); |
214 |
|
215 |
// velocity half step |
216 |
//for(j = 0; j < 3; j++) |
217 |
// vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi); |
218 |
vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index]; |
219 |
|
220 |
integrableObject->setVel(vel); |
221 |
|
222 |
if (integrableObject->isDirectional()) { |
223 |
|
224 |
// get and convert the torque to body frame |
225 |
|
226 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
227 |
|
228 |
//for(j = 0; j < 3; j++) |
229 |
// ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi); |
230 |
ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index]; |
231 |
|
232 |
integrableObject->setJ(ji); |
233 |
} |
234 |
|
235 |
|
236 |
++index; |
237 |
} |
238 |
} |
239 |
|
240 |
|
241 |
rattle->constraintB(); |
242 |
|
243 |
if (fabs(prevChi - chi) <= chiTolerance_) |
244 |
break; |
245 |
|
246 |
} |
247 |
|
248 |
integralOfChidt += dt2 * chi; |
249 |
|
250 |
currentSnapshot_->setChi(chi); |
251 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
252 |
} |
253 |
|
254 |
void NVT::resetIntegrator() { |
255 |
currentSnapshot_->setChi(0.0); |
256 |
currentSnapshot_->setIntegralOfChiDt(0.0); |
257 |
} |
258 |
|
259 |
RealType NVT::calcConservedQuantity() { |
260 |
|
261 |
RealType chi = currentSnapshot_->getChi(); |
262 |
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
263 |
RealType conservedQuantity; |
264 |
RealType fkBT; |
265 |
RealType Energy; |
266 |
RealType thermostat_kinetic; |
267 |
RealType thermostat_potential; |
268 |
|
269 |
fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_; |
270 |
|
271 |
Energy = thermo.getTotalE(); |
272 |
|
273 |
thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
274 |
|
275 |
thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert; |
276 |
|
277 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
278 |
|
279 |
return conservedQuantity; |
280 |
} |
281 |
|
282 |
|
283 |
}//end namespace OpenMD |