ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NVT.cpp
Revision: 1710
Committed: Fri May 18 21:44:02 2012 UTC (12 years, 11 months ago) by gezelter
File size: 9208 byte(s)
Log Message:
Added an adapter layer between the AtomType and the rest of the code to 
handle the bolt-on capabilities of new types. 

Fixed a long-standing bug in how storageLayout was being set to the maximum
possible value.

Started to add infrastructure for Polarizable and fluc-Q calculations.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "integrators/NVT.hpp"
44 #include "primitives/Molecule.hpp"
45 #include "utils/simError.h"
46 #include "utils/PhysicalConstants.hpp"
47
48 namespace OpenMD {
49
50 NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
51
52 Globals* simParams = info_->getSimParams();
53
54 if (!simParams->getUseIntialExtendedSystemState()) {
55 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
56 currSnapshot->setChi(0.0);
57 currSnapshot->setIntegralOfChiDt(0.0);
58 }
59
60 if (!simParams->haveTargetTemp()) {
61 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
62 painCave.isFatal = 1;
63 painCave.severity = OPENMD_ERROR;
64 simError();
65 } else {
66 targetTemp_ = simParams->getTargetTemp();
67 }
68
69 // We must set tauThermostat.
70
71 if (!simParams->haveTauThermostat()) {
72 sprintf(painCave.errMsg, "If you use the constant temperature\n"
73 "\tintegrator, you must set tauThermostat.\n");
74
75 painCave.severity = OPENMD_ERROR;
76 painCave.isFatal = 1;
77 simError();
78 } else {
79 tauThermostat_ = simParams->getTauThermostat();
80 }
81
82 update();
83 }
84
85 void NVT::doUpdate() {
86 oldVel_.resize(info_->getNIntegrableObjects());
87 oldJi_.resize(info_->getNIntegrableObjects());
88 }
89 void NVT::moveA() {
90 SimInfo::MoleculeIterator i;
91 Molecule::IntegrableObjectIterator j;
92 Molecule* mol;
93 StuntDouble* integrableObject;
94 Vector3d Tb;
95 Vector3d ji;
96 RealType mass;
97 Vector3d vel;
98 Vector3d pos;
99 Vector3d frc;
100
101 RealType chi = currentSnapshot_->getChi();
102 RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
103
104 // We need the temperature at time = t for the chi update below:
105
106 RealType instTemp = thermo.getTemperature();
107
108 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
109 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
110 integrableObject = mol->nextIntegrableObject(j)) {
111
112 vel = integrableObject->getVel();
113 pos = integrableObject->getPos();
114 frc = integrableObject->getFrc();
115
116 mass = integrableObject->getMass();
117
118 // velocity half step (use chi from previous step here):
119 //vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi);
120 vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel;
121
122 // position whole step
123 //pos[j] += dt * vel[j];
124 pos += dt * vel;
125
126 integrableObject->setVel(vel);
127 integrableObject->setPos(pos);
128
129 if (integrableObject->isDirectional()) {
130
131 //convert the torque to body frame
132 Tb = integrableObject->lab2Body(integrableObject->getTrq());
133
134 // get the angular momentum, and propagate a half step
135
136 ji = integrableObject->getJ();
137
138 //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi);
139 ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji;
140 rotAlgo->rotate(integrableObject, ji, dt);
141
142 integrableObject->setJ(ji);
143 }
144 }
145
146 }
147
148 rattle->constraintA();
149
150 // Finally, evolve chi a half step (just like a velocity) using
151 // temperature at time t, not time t+dt/2
152
153
154 chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
155 integralOfChidt += chi * dt2;
156
157 currentSnapshot_->setChi(chi);
158 currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
159 }
160
161 void NVT::moveB() {
162 SimInfo::MoleculeIterator i;
163 Molecule::IntegrableObjectIterator j;
164 Molecule* mol;
165 StuntDouble* integrableObject;
166
167 Vector3d Tb;
168 Vector3d ji;
169 Vector3d vel;
170 Vector3d frc;
171 RealType mass;
172 RealType instTemp;
173 int index;
174 // Set things up for the iteration:
175
176 RealType chi = currentSnapshot_->getChi();
177 RealType oldChi = chi;
178 RealType prevChi;
179 RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
180
181 index = 0;
182 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
183 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
184 integrableObject = mol->nextIntegrableObject(j)) {
185
186 oldVel_[index] = integrableObject->getVel();
187
188 if (integrableObject->isDirectional())
189 oldJi_[index] = integrableObject->getJ();
190
191 ++index;
192 }
193 }
194
195 // do the iteration:
196
197 for(int k = 0; k < maxIterNum_; k++) {
198 index = 0;
199 instTemp = thermo.getTemperature();
200
201 // evolve chi another half step using the temperature at t + dt/2
202
203 prevChi = chi;
204 chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
205
206 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
207 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
208 integrableObject = mol->nextIntegrableObject(j)) {
209
210 frc = integrableObject->getFrc();
211 vel = integrableObject->getVel();
212
213 mass = integrableObject->getMass();
214
215 // velocity half step
216 //for(j = 0; j < 3; j++)
217 // vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi);
218 vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index];
219
220 integrableObject->setVel(vel);
221
222 if (integrableObject->isDirectional()) {
223
224 // get and convert the torque to body frame
225
226 Tb = integrableObject->lab2Body(integrableObject->getTrq());
227
228 //for(j = 0; j < 3; j++)
229 // ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi);
230 ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index];
231
232 integrableObject->setJ(ji);
233 }
234
235
236 ++index;
237 }
238 }
239
240
241 rattle->constraintB();
242
243 if (fabs(prevChi - chi) <= chiTolerance_)
244 break;
245
246 }
247
248 integralOfChidt += dt2 * chi;
249
250 currentSnapshot_->setChi(chi);
251 currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
252 }
253
254 void NVT::resetIntegrator() {
255 currentSnapshot_->setChi(0.0);
256 currentSnapshot_->setIntegralOfChiDt(0.0);
257 }
258
259 RealType NVT::calcConservedQuantity() {
260
261 RealType chi = currentSnapshot_->getChi();
262 RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
263 RealType conservedQuantity;
264 RealType fkBT;
265 RealType Energy;
266 RealType thermostat_kinetic;
267 RealType thermostat_potential;
268
269 fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
270
271 Energy = thermo.getTotalE();
272
273 thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert);
274
275 thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert;
276
277 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
278
279 return conservedQuantity;
280 }
281
282
283 }//end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date