ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NVT.cpp
Revision: 1715
Committed: Tue May 22 21:55:31 2012 UTC (12 years, 11 months ago) by gezelter
File size: 9258 byte(s)
Log Message:
Adding more support structure for Fluctuating Charges.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43     #include "integrators/NVT.hpp"
44     #include "primitives/Molecule.hpp"
45 tim 3 #include "utils/simError.h"
46 gezelter 1390 #include "utils/PhysicalConstants.hpp"
47 gezelter 2
48 gezelter 1390 namespace OpenMD {
49 gezelter 2
50 gezelter 507 NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
51 gezelter 2
52 gezelter 246 Globals* simParams = info_->getSimParams();
53 gezelter 2
54 tim 665 if (!simParams->getUseIntialExtendedSystemState()) {
55 gezelter 507 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
56     currSnapshot->setChi(0.0);
57     currSnapshot->setIntegralOfChiDt(0.0);
58 gezelter 246 }
59    
60     if (!simParams->haveTargetTemp()) {
61 gezelter 507 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
62     painCave.isFatal = 1;
63 gezelter 1390 painCave.severity = OPENMD_ERROR;
64 gezelter 507 simError();
65 gezelter 246 } else {
66 gezelter 507 targetTemp_ = simParams->getTargetTemp();
67 gezelter 246 }
68 gezelter 2
69 gezelter 1277 // We must set tauThermostat.
70 gezelter 2
71 gezelter 246 if (!simParams->haveTauThermostat()) {
72 gezelter 507 sprintf(painCave.errMsg, "If you use the constant temperature\n"
73 gezelter 1277 "\tintegrator, you must set tauThermostat.\n");
74 gezelter 2
75 gezelter 1390 painCave.severity = OPENMD_ERROR;
76 gezelter 507 painCave.isFatal = 1;
77     simError();
78 gezelter 246 } else {
79 gezelter 507 tauThermostat_ = simParams->getTauThermostat();
80 gezelter 2 }
81    
82 gezelter 1715 updateSizes();
83 gezelter 507 }
84 gezelter 2
85 gezelter 1715 void NVT::doUpdateSizes() {
86 gezelter 246 oldVel_.resize(info_->getNIntegrableObjects());
87 gezelter 1715 oldJi_.resize(info_->getNIntegrableObjects());
88 gezelter 507 }
89     void NVT::moveA() {
90 gezelter 246 SimInfo::MoleculeIterator i;
91     Molecule::IntegrableObjectIterator j;
92     Molecule* mol;
93     StuntDouble* integrableObject;
94     Vector3d Tb;
95     Vector3d ji;
96 tim 963 RealType mass;
97 gezelter 246 Vector3d vel;
98     Vector3d pos;
99     Vector3d frc;
100 gezelter 2
101 tim 963 RealType chi = currentSnapshot_->getChi();
102     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
103 gezelter 246
104     // We need the temperature at time = t for the chi update below:
105 gezelter 2
106 tim 963 RealType instTemp = thermo.getTemperature();
107 gezelter 2
108 gezelter 246 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
109 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
110     integrableObject = mol->nextIntegrableObject(j)) {
111 gezelter 2
112 gezelter 246 vel = integrableObject->getVel();
113     pos = integrableObject->getPos();
114     frc = integrableObject->getFrc();
115 gezelter 2
116 gezelter 246 mass = integrableObject->getMass();
117 gezelter 2
118 gezelter 246 // velocity half step (use chi from previous step here):
119 gezelter 1390 //vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi);
120     vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel;
121 gezelter 246
122     // position whole step
123     //pos[j] += dt * vel[j];
124     pos += dt * vel;
125 gezelter 2
126 gezelter 246 integrableObject->setVel(vel);
127     integrableObject->setPos(pos);
128 gezelter 2
129 gezelter 246 if (integrableObject->isDirectional()) {
130 gezelter 2
131 gezelter 507 //convert the torque to body frame
132     Tb = integrableObject->lab2Body(integrableObject->getTrq());
133 gezelter 2
134 gezelter 507 // get the angular momentum, and propagate a half step
135 gezelter 2
136 gezelter 507 ji = integrableObject->getJ();
137 gezelter 2
138 gezelter 1390 //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi);
139     ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji;
140 gezelter 1715 rotAlgo_->rotate(integrableObject, ji, dt);
141 gezelter 2
142 gezelter 507 integrableObject->setJ(ji);
143 gezelter 246 }
144 gezelter 507 }
145 gezelter 2
146     }
147 gezelter 246
148 gezelter 1715 flucQ_->moveA();
149     rattle_->constraintA();
150 gezelter 2
151 gezelter 246 // Finally, evolve chi a half step (just like a velocity) using
152     // temperature at time t, not time t+dt/2
153 gezelter 2
154 gezelter 246
155     chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
156     integralOfChidt += chi * dt2;
157 gezelter 2
158 gezelter 246 currentSnapshot_->setChi(chi);
159     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
160 gezelter 507 }
161 gezelter 2
162 gezelter 507 void NVT::moveB() {
163 gezelter 246 SimInfo::MoleculeIterator i;
164     Molecule::IntegrableObjectIterator j;
165     Molecule* mol;
166     StuntDouble* integrableObject;
167    
168     Vector3d Tb;
169     Vector3d ji;
170     Vector3d vel;
171     Vector3d frc;
172 tim 963 RealType mass;
173     RealType instTemp;
174 gezelter 246 int index;
175     // Set things up for the iteration:
176 gezelter 2
177 tim 963 RealType chi = currentSnapshot_->getChi();
178     RealType oldChi = chi;
179     RealType prevChi;
180     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
181 gezelter 2
182 gezelter 246 index = 0;
183     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
184 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
185     integrableObject = mol->nextIntegrableObject(j)) {
186 gezelter 1710
187 gezelter 507 oldVel_[index] = integrableObject->getVel();
188 gezelter 1710
189     if (integrableObject->isDirectional())
190     oldJi_[index] = integrableObject->getJ();
191    
192 gezelter 507 ++index;
193 gezelter 1710 }
194 gezelter 2 }
195    
196 gezelter 246 // do the iteration:
197 gezelter 2
198 gezelter 246 for(int k = 0; k < maxIterNum_; k++) {
199 gezelter 507 index = 0;
200     instTemp = thermo.getTemperature();
201 gezelter 2
202 gezelter 507 // evolve chi another half step using the temperature at t + dt/2
203 gezelter 2
204 gezelter 507 prevChi = chi;
205     chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
206 gezelter 2
207 gezelter 507 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
208     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
209     integrableObject = mol->nextIntegrableObject(j)) {
210 gezelter 2
211 gezelter 507 frc = integrableObject->getFrc();
212     vel = integrableObject->getVel();
213 gezelter 2
214 gezelter 507 mass = integrableObject->getMass();
215 gezelter 2
216 gezelter 507 // velocity half step
217     //for(j = 0; j < 3; j++)
218 gezelter 1390 // vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi);
219     vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index];
220 gezelter 246
221 gezelter 507 integrableObject->setVel(vel);
222 gezelter 2
223 gezelter 507 if (integrableObject->isDirectional()) {
224 gezelter 2
225 gezelter 507 // get and convert the torque to body frame
226 gezelter 2
227 gezelter 507 Tb = integrableObject->lab2Body(integrableObject->getTrq());
228 gezelter 2
229 gezelter 507 //for(j = 0; j < 3; j++)
230 gezelter 1390 // ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi);
231     ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index];
232 gezelter 2
233 gezelter 507 integrableObject->setJ(ji);
234     }
235 gezelter 2
236    
237 gezelter 507 ++index;
238     }
239     }
240 gezelter 2
241 gezelter 1715 rattle_->constraintB();
242 gezelter 2
243 gezelter 507 if (fabs(prevChi - chi) <= chiTolerance_)
244     break;
245 gezelter 2
246 gezelter 246 }
247 gezelter 2
248 gezelter 1715 flucQ_->moveB();
249    
250 gezelter 246 integralOfChidt += dt2 * chi;
251     currentSnapshot_->setChi(chi);
252     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
253 gezelter 507 }
254 gezelter 2
255 tim 546 void NVT::resetIntegrator() {
256     currentSnapshot_->setChi(0.0);
257     currentSnapshot_->setIntegralOfChiDt(0.0);
258     }
259    
260 tim 963 RealType NVT::calcConservedQuantity() {
261 gezelter 2
262 tim 963 RealType chi = currentSnapshot_->getChi();
263     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
264     RealType conservedQuantity;
265     RealType fkBT;
266     RealType Energy;
267     RealType thermostat_kinetic;
268     RealType thermostat_potential;
269 gezelter 246
270 gezelter 1390 fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
271 gezelter 2
272 gezelter 246 Energy = thermo.getTotalE();
273 gezelter 2
274 gezelter 1390 thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert);
275 gezelter 2
276 gezelter 1390 thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert;
277 gezelter 2
278 gezelter 246 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
279 gezelter 2
280 gezelter 246 return conservedQuantity;
281 gezelter 507 }
282 gezelter 2
283    
284 gezelter 1390 }//end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date