ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NVT.cpp
Revision: 1465
Committed: Fri Jul 9 23:08:25 2010 UTC (14 years, 9 months ago) by chuckv
File size: 9068 byte(s)
Log Message:
Creating busticated version of OpenMD

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42     #include "integrators/NVT.hpp"
43     #include "primitives/Molecule.hpp"
44 tim 3 #include "utils/simError.h"
45 gezelter 1390 #include "utils/PhysicalConstants.hpp"
46 gezelter 2
47 gezelter 1390 namespace OpenMD {
48 gezelter 2
49 gezelter 507 NVT::NVT(SimInfo* info) : VelocityVerletIntegrator(info), chiTolerance_ (1e-6), maxIterNum_(4) {
50 gezelter 2
51 gezelter 246 Globals* simParams = info_->getSimParams();
52 gezelter 2
53 tim 665 if (!simParams->getUseIntialExtendedSystemState()) {
54 gezelter 507 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
55     currSnapshot->setChi(0.0);
56     currSnapshot->setIntegralOfChiDt(0.0);
57 gezelter 246 }
58    
59     if (!simParams->haveTargetTemp()) {
60 gezelter 507 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp_!\n");
61     painCave.isFatal = 1;
62 gezelter 1390 painCave.severity = OPENMD_ERROR;
63 gezelter 507 simError();
64 gezelter 246 } else {
65 gezelter 507 targetTemp_ = simParams->getTargetTemp();
66 gezelter 246 }
67 gezelter 2
68 gezelter 1277 // We must set tauThermostat.
69 gezelter 2
70 gezelter 246 if (!simParams->haveTauThermostat()) {
71 gezelter 507 sprintf(painCave.errMsg, "If you use the constant temperature\n"
72 gezelter 1277 "\tintegrator, you must set tauThermostat.\n");
73 gezelter 2
74 gezelter 1390 painCave.severity = OPENMD_ERROR;
75 gezelter 507 painCave.isFatal = 1;
76     simError();
77 gezelter 246 } else {
78 gezelter 507 tauThermostat_ = simParams->getTauThermostat();
79 gezelter 2 }
80    
81 gezelter 246 update();
82 gezelter 507 }
83 gezelter 2
84 gezelter 507 void NVT::doUpdate() {
85 gezelter 246 oldVel_.resize(info_->getNIntegrableObjects());
86     oldJi_.resize(info_->getNIntegrableObjects());
87 gezelter 507 }
88     void NVT::moveA() {
89 gezelter 246 SimInfo::MoleculeIterator i;
90     Molecule::IntegrableObjectIterator j;
91     Molecule* mol;
92     StuntDouble* integrableObject;
93     Vector3d Tb;
94     Vector3d ji;
95 tim 963 RealType mass;
96 gezelter 246 Vector3d vel;
97     Vector3d pos;
98     Vector3d frc;
99 gezelter 2
100 tim 963 RealType chi = currentSnapshot_->getChi();
101     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
102 gezelter 246
103     // We need the temperature at time = t for the chi update below:
104 gezelter 2
105 tim 963 RealType instTemp = thermo.getTemperature();
106 gezelter 2
107 gezelter 246 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
108 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
109     integrableObject = mol->nextIntegrableObject(j)) {
110 gezelter 2
111 gezelter 246 vel = integrableObject->getVel();
112     pos = integrableObject->getPos();
113     frc = integrableObject->getFrc();
114 gezelter 2
115 gezelter 246 mass = integrableObject->getMass();
116 gezelter 2
117 gezelter 246 // velocity half step (use chi from previous step here):
118 gezelter 1390 //vel[j] += dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - vel[j]*chi);
119     vel += dt2 *PhysicalConstants::energyConvert/mass*frc - dt2*chi*vel;
120 gezelter 246
121     // position whole step
122     //pos[j] += dt * vel[j];
123     pos += dt * vel;
124 gezelter 2
125 gezelter 246 integrableObject->setVel(vel);
126     integrableObject->setPos(pos);
127 gezelter 2
128 gezelter 246 if (integrableObject->isDirectional()) {
129 gezelter 2
130 gezelter 507 //convert the torque to body frame
131     Tb = integrableObject->lab2Body(integrableObject->getTrq());
132 gezelter 2
133 gezelter 507 // get the angular momentum, and propagate a half step
134 gezelter 2
135 gezelter 507 ji = integrableObject->getJ();
136 gezelter 2
137 gezelter 1390 //ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi);
138     ji += dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *ji;
139 gezelter 507 rotAlgo->rotate(integrableObject, ji, dt);
140 gezelter 2
141 gezelter 507 integrableObject->setJ(ji);
142 gezelter 246 }
143 gezelter 507 }
144 gezelter 2
145     }
146 gezelter 246
147     rattle->constraintA();
148 gezelter 2
149 gezelter 246 // Finally, evolve chi a half step (just like a velocity) using
150     // temperature at time t, not time t+dt/2
151 gezelter 2
152 gezelter 246
153     chi += dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
154     integralOfChidt += chi * dt2;
155 gezelter 2
156 gezelter 246 currentSnapshot_->setChi(chi);
157     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
158 gezelter 507 }
159 gezelter 2
160 gezelter 507 void NVT::moveB() {
161 gezelter 246 SimInfo::MoleculeIterator i;
162     Molecule::IntegrableObjectIterator j;
163     Molecule* mol;
164     StuntDouble* integrableObject;
165    
166     Vector3d Tb;
167     Vector3d ji;
168     Vector3d vel;
169     Vector3d frc;
170 tim 963 RealType mass;
171     RealType instTemp;
172 gezelter 246 int index;
173     // Set things up for the iteration:
174 gezelter 2
175 tim 963 RealType chi = currentSnapshot_->getChi();
176     RealType oldChi = chi;
177     RealType prevChi;
178     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
179 gezelter 2
180 gezelter 246 index = 0;
181     for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
182 gezelter 507 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
183     integrableObject = mol->nextIntegrableObject(j)) {
184     oldVel_[index] = integrableObject->getVel();
185     oldJi_[index] = integrableObject->getJ();
186 gezelter 2
187 gezelter 507 ++index;
188     }
189 gezelter 246
190 gezelter 2 }
191    
192 gezelter 246 // do the iteration:
193 gezelter 2
194 gezelter 246 for(int k = 0; k < maxIterNum_; k++) {
195 gezelter 507 index = 0;
196     instTemp = thermo.getTemperature();
197 gezelter 2
198 gezelter 507 // evolve chi another half step using the temperature at t + dt/2
199 gezelter 2
200 gezelter 507 prevChi = chi;
201     chi = oldChi + dt2 * (instTemp / targetTemp_ - 1.0) / (tauThermostat_ * tauThermostat_);
202 gezelter 2
203 gezelter 507 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
204     for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
205     integrableObject = mol->nextIntegrableObject(j)) {
206 gezelter 2
207 gezelter 507 frc = integrableObject->getFrc();
208     vel = integrableObject->getVel();
209 gezelter 2
210 gezelter 507 mass = integrableObject->getMass();
211 gezelter 2
212 gezelter 507 // velocity half step
213     //for(j = 0; j < 3; j++)
214 gezelter 1390 // vel[j] = oldVel_[3*i+j] + dt2 * ((frc[j] / mass ) * PhysicalConstants::energyConvert - oldVel_[3*i + j]*chi);
215     vel = oldVel_[index] + dt2/mass*PhysicalConstants::energyConvert * frc - dt2*chi*oldVel_[index];
216 gezelter 246
217 gezelter 507 integrableObject->setVel(vel);
218 gezelter 2
219 gezelter 507 if (integrableObject->isDirectional()) {
220 gezelter 2
221 gezelter 507 // get and convert the torque to body frame
222 gezelter 2
223 gezelter 507 Tb = integrableObject->lab2Body(integrableObject->getTrq());
224 gezelter 2
225 gezelter 507 //for(j = 0; j < 3; j++)
226 gezelter 1390 // ji[j] = oldJi_[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi_[3*i+j]*chi);
227     ji = oldJi_[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi *oldJi_[index];
228 gezelter 2
229 gezelter 507 integrableObject->setJ(ji);
230     }
231 gezelter 2
232    
233 gezelter 507 ++index;
234     }
235     }
236 gezelter 2
237    
238 gezelter 507 rattle->constraintB();
239 gezelter 2
240 gezelter 507 if (fabs(prevChi - chi) <= chiTolerance_)
241     break;
242 gezelter 2
243 gezelter 246 }
244 gezelter 2
245 gezelter 246 integralOfChidt += dt2 * chi;
246 gezelter 2
247 gezelter 246 currentSnapshot_->setChi(chi);
248     currentSnapshot_->setIntegralOfChiDt(integralOfChidt);
249 gezelter 507 }
250 gezelter 2
251 tim 546 void NVT::resetIntegrator() {
252     currentSnapshot_->setChi(0.0);
253     currentSnapshot_->setIntegralOfChiDt(0.0);
254     }
255    
256 tim 963 RealType NVT::calcConservedQuantity() {
257 gezelter 2
258 tim 963 RealType chi = currentSnapshot_->getChi();
259     RealType integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
260     RealType conservedQuantity;
261     RealType fkBT;
262     RealType Energy;
263     RealType thermostat_kinetic;
264     RealType thermostat_potential;
265 gezelter 246
266 gezelter 1390 fkBT = info_->getNdf() *PhysicalConstants::kB *targetTemp_;
267 gezelter 2
268 gezelter 246 Energy = thermo.getTotalE();
269 gezelter 2
270 gezelter 1390 thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * chi * chi / (2.0 * PhysicalConstants::energyConvert);
271 gezelter 2
272 gezelter 1390 thermostat_potential = fkBT * integralOfChidt / PhysicalConstants::energyConvert;
273 gezelter 2
274 gezelter 246 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
275 gezelter 2
276 gezelter 246 return conservedQuantity;
277 gezelter 507 }
278 gezelter 2
279    
280 gezelter 1390 }//end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date