1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file NVE.cpp |
45 |
* @author tlin |
46 |
* @date 11/08/2004 |
47 |
* @time 15:13am |
48 |
* @version 1.0 |
49 |
*/ |
50 |
|
51 |
#include "integrators/NVE.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#include "utils/PhysicalConstants.hpp" |
54 |
|
55 |
namespace OpenMD { |
56 |
|
57 |
|
58 |
NVE::NVE(SimInfo* info) : VelocityVerletIntegrator(info){ |
59 |
|
60 |
} |
61 |
|
62 |
void NVE::moveA(){ |
63 |
SimInfo::MoleculeIterator i; |
64 |
Molecule::IntegrableObjectIterator j; |
65 |
Molecule* mol; |
66 |
StuntDouble* integrableObject; |
67 |
Vector3d vel; |
68 |
Vector3d pos; |
69 |
Vector3d frc; |
70 |
Vector3d Tb; |
71 |
Vector3d ji; |
72 |
RealType mass; |
73 |
|
74 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
75 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
76 |
integrableObject = mol->nextIntegrableObject(j)) { |
77 |
|
78 |
vel =integrableObject->getVel(); |
79 |
pos = integrableObject->getPos(); |
80 |
frc = integrableObject->getFrc(); |
81 |
mass = integrableObject->getMass(); |
82 |
|
83 |
// velocity half step |
84 |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
85 |
|
86 |
// position whole step |
87 |
pos += dt * vel; |
88 |
|
89 |
integrableObject->setVel(vel); |
90 |
integrableObject->setPos(pos); |
91 |
|
92 |
if (integrableObject->isDirectional()){ |
93 |
|
94 |
// get and convert the torque to body frame |
95 |
|
96 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
97 |
|
98 |
// get the angular momentum, and propagate a half step |
99 |
|
100 |
ji = integrableObject->getJ(); |
101 |
|
102 |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
103 |
|
104 |
rotAlgo_->rotate(integrableObject, ji, dt); |
105 |
|
106 |
integrableObject->setJ(ji); |
107 |
} |
108 |
|
109 |
|
110 |
} |
111 |
} //end for(mol = info_->beginMolecule(i)) |
112 |
flucQ_->moveA(); |
113 |
rattle_->constraintA(); |
114 |
} |
115 |
|
116 |
void NVE::moveB(){ |
117 |
SimInfo::MoleculeIterator i; |
118 |
Molecule::IntegrableObjectIterator j; |
119 |
Molecule* mol; |
120 |
StuntDouble* integrableObject; |
121 |
Vector3d vel; |
122 |
Vector3d frc; |
123 |
Vector3d Tb; |
124 |
Vector3d ji; |
125 |
RealType mass; |
126 |
|
127 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
128 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
integrableObject = mol->nextIntegrableObject(j)) { |
130 |
|
131 |
vel =integrableObject->getVel(); |
132 |
frc = integrableObject->getFrc(); |
133 |
mass = integrableObject->getMass(); |
134 |
|
135 |
// velocity half step |
136 |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
137 |
|
138 |
integrableObject->setVel(vel); |
139 |
|
140 |
if (integrableObject->isDirectional()){ |
141 |
|
142 |
// get and convert the torque to body frame |
143 |
|
144 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
145 |
|
146 |
// get the angular momentum, and propagate a half step |
147 |
|
148 |
ji = integrableObject->getJ(); |
149 |
|
150 |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
151 |
|
152 |
integrableObject->setJ(ji); |
153 |
} |
154 |
|
155 |
|
156 |
} |
157 |
} //end for(mol = info_->beginMolecule(i)) |
158 |
|
159 |
flucQ_->moveB(); |
160 |
rattle_->constraintB(); |
161 |
} |
162 |
|
163 |
|
164 |
RealType NVE::calcConservedQuantity() { |
165 |
return thermo.getTotalEnergy(); |
166 |
} |
167 |
|
168 |
} //end namespace OpenMD |