1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "brains/SimInfo.hpp" |
44 |
#include "brains/Thermo.hpp" |
45 |
#include "integrators/IntegratorCreator.hpp" |
46 |
#include "integrators/NPrT.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/PhysicalConstants.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
namespace OpenMD { |
52 |
NPrT::NPrT(SimInfo* info) : NPT(info) { |
53 |
Globals* simParams = info_->getSimParams(); |
54 |
if (!simParams->haveSurfaceTension()) { |
55 |
sprintf(painCave.errMsg, |
56 |
"If you use the NPT integrator, you must set tauBarostat.\n"); |
57 |
painCave.severity = OPENMD_ERROR; |
58 |
painCave.isFatal = 1; |
59 |
simError(); |
60 |
} else { |
61 |
surfaceTension= simParams->getSurfaceTension()* PhysicalConstants::surfaceTensionConvert * PhysicalConstants::energyConvert; |
62 |
} |
63 |
|
64 |
} |
65 |
void NPrT::evolveEtaA() { |
66 |
Mat3x3d hmat = snap->getHmat(); |
67 |
RealType hz = hmat(2, 2); |
68 |
RealType Axy = hmat(0,0) * hmat(1, 1); |
69 |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
70 |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
71 |
eta(0,0) -= dt2* Axy * (sx - surfaceTension) / (NkBT*tb2); |
72 |
eta(1,1) -= dt2* Axy * (sy - surfaceTension) / (NkBT*tb2); |
73 |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
74 |
oldEta = eta; |
75 |
} |
76 |
|
77 |
void NPrT::evolveEtaB() { |
78 |
Mat3x3d hmat = snap->getHmat(); |
79 |
RealType hz = hmat(2, 2); |
80 |
RealType Axy = hmat(0,0) * hmat(1, 1); |
81 |
prevEta = eta; |
82 |
RealType sx = -hz * (press(0, 0) - targetPressure/PhysicalConstants::pressureConvert); |
83 |
RealType sy = -hz * (press(1, 1) - targetPressure/PhysicalConstants::pressureConvert); |
84 |
eta(0,0) = oldEta(0, 0) - dt2 * Axy * (sx -surfaceTension) / (NkBT*tb2); |
85 |
eta(1,1) = oldEta(1, 1) - dt2 * Axy * (sy -surfaceTension) / (NkBT*tb2); |
86 |
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
87 |
(press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
88 |
} |
89 |
|
90 |
void NPrT::calcVelScale(){ |
91 |
|
92 |
for (int i = 0; i < 3; i++ ) { |
93 |
for (int j = 0; j < 3; j++ ) { |
94 |
vScale(i, j) = eta(i, j); |
95 |
|
96 |
if (i == j) { |
97 |
vScale(i, j) += thermostat.first; |
98 |
} |
99 |
} |
100 |
} |
101 |
} |
102 |
|
103 |
void NPrT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
104 |
sc = vScale * vel; |
105 |
} |
106 |
|
107 |
void NPrT::getVelScaleB(Vector3d& sc, int index ) { |
108 |
sc = vScale * oldVel[index]; |
109 |
} |
110 |
|
111 |
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
112 |
|
113 |
/**@todo */ |
114 |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
115 |
sc = eta * rj; |
116 |
} |
117 |
|
118 |
void NPrT::scaleSimBox(){ |
119 |
Mat3x3d scaleMat; |
120 |
|
121 |
scaleMat(0, 0) = exp(dt*eta(0, 0)); |
122 |
scaleMat(1, 1) = exp(dt*eta(1, 1)); |
123 |
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
124 |
Mat3x3d hmat = snap->getHmat(); |
125 |
hmat = hmat *scaleMat; |
126 |
snap->setHmat(hmat); |
127 |
|
128 |
} |
129 |
|
130 |
bool NPrT::etaConverged() { |
131 |
int i; |
132 |
RealType diffEta, sumEta; |
133 |
|
134 |
sumEta = 0; |
135 |
for(i = 0; i < 3; i++) { |
136 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
137 |
} |
138 |
|
139 |
diffEta = sqrt( sumEta / 3.0 ); |
140 |
|
141 |
return ( diffEta <= etaTolerance ); |
142 |
} |
143 |
|
144 |
RealType NPrT::calcConservedQuantity(){ |
145 |
thermostat = snap->getThermostat(); |
146 |
loadEta(); |
147 |
|
148 |
// We need NkBT a lot, so just set it here: This is the RAW number |
149 |
// of integrableObjects, so no subtraction or addition of constraints or |
150 |
// orientational degrees of freedom: |
151 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
152 |
|
153 |
// fkBT is used because the thermostat operates on more degrees of freedom |
154 |
// than the barostat (when there are particles with orientational degrees |
155 |
// of freedom). |
156 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
157 |
|
158 |
|
159 |
RealType totalEnergy = thermo.getTotalEnergy(); |
160 |
|
161 |
RealType thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
162 |
|
163 |
RealType thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
164 |
|
165 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
166 |
RealType trEta = tmp.trace(); |
167 |
|
168 |
RealType barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
169 |
|
170 |
RealType barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
171 |
|
172 |
Mat3x3d hmat = snap->getHmat(); |
173 |
RealType hz = hmat(2, 2); |
174 |
RealType area = hmat(0,0) * hmat(1, 1); |
175 |
|
176 |
RealType conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
177 |
barostat_kinetic + barostat_potential - surfaceTension * area/ PhysicalConstants::energyConvert; |
178 |
|
179 |
return conservedQuantity; |
180 |
|
181 |
} |
182 |
|
183 |
void NPrT::loadEta() { |
184 |
eta= snap->getBarostat(); |
185 |
|
186 |
//if (!eta.isDiagonal()) { |
187 |
// sprintf( painCave.errMsg, |
188 |
// "NPrT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
189 |
// painCave.isFatal = 1; |
190 |
// simError(); |
191 |
//} |
192 |
} |
193 |
|
194 |
void NPrT::saveEta() { |
195 |
snap->setBarostat(eta); |
196 |
} |
197 |
|
198 |
} |
199 |
|
200 |
|