1 |
tim |
536 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Acknowledgement of the program authors must be made in any |
10 |
|
|
* publication of scientific results based in part on use of the |
11 |
|
|
* program. An acceptable form of acknowledgement is citation of |
12 |
|
|
* the article in which the program was described (Matthew |
13 |
|
|
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
|
|
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
|
|
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
|
|
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
|
|
* |
18 |
|
|
* 2. Redistributions of source code must retain the above copyright |
19 |
|
|
* notice, this list of conditions and the following disclaimer. |
20 |
|
|
* |
21 |
|
|
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
|
|
* notice, this list of conditions and the following disclaimer in the |
23 |
|
|
* documentation and/or other materials provided with the |
24 |
|
|
* distribution. |
25 |
|
|
* |
26 |
|
|
* This software is provided "AS IS," without a warranty of any |
27 |
|
|
* kind. All express or implied conditions, representations and |
28 |
|
|
* warranties, including any implied warranty of merchantability, |
29 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
30 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
31 |
|
|
* be liable for any damages suffered by licensee as a result of |
32 |
|
|
* using, modifying or distributing the software or its |
33 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
34 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
35 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
36 |
|
|
* damages, however caused and regardless of the theory of liability, |
37 |
|
|
* arising out of the use of or inability to use software, even if the |
38 |
|
|
* University of Notre Dame has been advised of the possibility of |
39 |
|
|
* such damages. |
40 |
|
|
*/ |
41 |
|
|
|
42 |
|
|
#include "brains/SimInfo.hpp" |
43 |
|
|
#include "brains/Thermo.hpp" |
44 |
|
|
#include "integrators/IntegratorCreator.hpp" |
45 |
|
|
#include "integrators/NPrT.hpp" |
46 |
|
|
#include "primitives/Molecule.hpp" |
47 |
|
|
#include "utils/OOPSEConstant.hpp" |
48 |
|
|
#include "utils/simError.h" |
49 |
|
|
|
50 |
|
|
namespace oopse { |
51 |
|
|
NPrT::NPrT(SimInfo* info) : NPT(info) { |
52 |
|
|
Globals* simParams = info_->getSimParams(); |
53 |
tim |
537 |
if (!simParams->haveTargetStress()) { |
54 |
tim |
536 |
sprintf(painCave.errMsg, |
55 |
|
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
56 |
|
|
painCave.severity = OOPSE_ERROR; |
57 |
|
|
painCave.isFatal = 1; |
58 |
|
|
simError(); |
59 |
|
|
} else { |
60 |
|
|
targetStress= simParams->getTargetStress(); |
61 |
|
|
} |
62 |
|
|
|
63 |
|
|
} |
64 |
|
|
void NPrT::evolveEtaA() { |
65 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
66 |
|
|
double hz = hmat(2, 2); |
67 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
68 |
tim |
536 |
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
69 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
70 |
|
|
eta(0,0) -= Axy * (sx - targetStress) / (NkBT*tb2); |
71 |
|
|
eta(1,1) -= Axy * (sy - targetStress) / (NkBT*tb2); |
72 |
|
|
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
73 |
|
|
oldEta = eta; |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
void NPrT::evolveEtaB() { |
77 |
tim |
537 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
78 |
|
|
double hz = hmat(2, 2); |
79 |
|
|
double Axy = hmat(0,0) * hmat(1, 1); |
80 |
tim |
536 |
prevEta = eta; |
81 |
|
|
double sx = -hz * (press(0, 0) - targetPressure/OOPSEConstant::pressureConvert); |
82 |
|
|
double sy = -hz * (press(1, 1) - targetPressure/OOPSEConstant::pressureConvert); |
83 |
|
|
eta(0,0) -= Axy * (sx -targetStress) / (NkBT*tb2); |
84 |
|
|
eta(1,1) -= Axy * (sy -targetStress) / (NkBT*tb2); |
85 |
|
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
86 |
|
|
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
87 |
|
|
} |
88 |
|
|
|
89 |
|
|
void NPrT::calcVelScale(){ |
90 |
|
|
|
91 |
|
|
for (int i = 0; i < 3; i++ ) { |
92 |
|
|
for (int j = 0; j < 3; j++ ) { |
93 |
|
|
vScale(i, j) = eta(i, j); |
94 |
|
|
|
95 |
|
|
if (i == j) { |
96 |
|
|
vScale(i, j) += chi; |
97 |
|
|
} |
98 |
|
|
} |
99 |
|
|
} |
100 |
|
|
} |
101 |
|
|
|
102 |
|
|
void NPrT::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
103 |
|
|
sc = vScale * vel; |
104 |
|
|
} |
105 |
|
|
|
106 |
|
|
void NPrT::getVelScaleB(Vector3d& sc, int index ) { |
107 |
|
|
sc = vScale * oldVel[index]; |
108 |
|
|
} |
109 |
|
|
|
110 |
|
|
void NPrT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
111 |
|
|
|
112 |
|
|
/**@todo */ |
113 |
|
|
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
114 |
|
|
sc = eta * rj; |
115 |
|
|
} |
116 |
|
|
|
117 |
|
|
void NPrT::scaleSimBox(){ |
118 |
|
|
|
119 |
|
|
int i; |
120 |
|
|
int j; |
121 |
|
|
int k; |
122 |
|
|
Mat3x3d scaleMat; |
123 |
|
|
double eta2ij; |
124 |
|
|
double bigScale, smallScale, offDiagMax; |
125 |
|
|
Mat3x3d hm; |
126 |
|
|
Mat3x3d hmnew; |
127 |
|
|
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
// Scale the box after all the positions have been moved: |
131 |
|
|
|
132 |
|
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
133 |
|
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
134 |
|
|
|
135 |
|
|
bigScale = 1.0; |
136 |
|
|
smallScale = 1.0; |
137 |
|
|
offDiagMax = 0.0; |
138 |
|
|
|
139 |
|
|
for(i=0; i<3; i++){ |
140 |
|
|
for(j=0; j<3; j++){ |
141 |
|
|
|
142 |
|
|
// Calculate the matrix Product of the eta array (we only need |
143 |
|
|
// the ij element right now): |
144 |
|
|
|
145 |
|
|
eta2ij = 0.0; |
146 |
|
|
for(k=0; k<3; k++){ |
147 |
|
|
eta2ij += eta(i, k) * eta(k, j); |
148 |
|
|
} |
149 |
|
|
|
150 |
|
|
scaleMat(i, j) = 0.0; |
151 |
|
|
// identity matrix (see above): |
152 |
|
|
if (i == j) scaleMat(i, j) = 1.0; |
153 |
|
|
// Taylor expansion for the exponential truncated at second order: |
154 |
|
|
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
155 |
|
|
|
156 |
|
|
|
157 |
|
|
if (i != j) |
158 |
|
|
if (fabs(scaleMat(i, j)) > offDiagMax) |
159 |
|
|
offDiagMax = fabs(scaleMat(i, j)); |
160 |
|
|
} |
161 |
|
|
|
162 |
|
|
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
163 |
|
|
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
164 |
|
|
} |
165 |
|
|
|
166 |
|
|
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
167 |
|
|
sprintf( painCave.errMsg, |
168 |
|
|
"NPrT error: Attempting a Box scaling of more than 1 percent.\n" |
169 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
170 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
171 |
|
|
" [%lf\t%lf\t%lf]\n" |
172 |
|
|
" [%lf\t%lf\t%lf]\n" |
173 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
174 |
|
|
" [%lf\t%lf\t%lf]\n" |
175 |
|
|
" [%lf\t%lf\t%lf]\n", |
176 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
177 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
178 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
179 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
180 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
181 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
182 |
|
|
painCave.isFatal = 1; |
183 |
|
|
simError(); |
184 |
|
|
} else if (offDiagMax > 0.01) { |
185 |
|
|
sprintf( painCave.errMsg, |
186 |
|
|
"NPrT error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
187 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
188 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
189 |
|
|
" [%lf\t%lf\t%lf]\n" |
190 |
|
|
" [%lf\t%lf\t%lf]\n" |
191 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
192 |
|
|
" [%lf\t%lf\t%lf]\n" |
193 |
|
|
" [%lf\t%lf\t%lf]\n", |
194 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
195 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
196 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
197 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
198 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
199 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
200 |
|
|
painCave.isFatal = 1; |
201 |
|
|
simError(); |
202 |
|
|
} else { |
203 |
|
|
|
204 |
|
|
Mat3x3d hmat = currentSnapshot_->getHmat(); |
205 |
|
|
hmat = hmat *scaleMat; |
206 |
|
|
currentSnapshot_->setHmat(hmat); |
207 |
|
|
|
208 |
|
|
} |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
bool NPrT::etaConverged() { |
212 |
|
|
int i; |
213 |
|
|
double diffEta, sumEta; |
214 |
|
|
|
215 |
|
|
sumEta = 0; |
216 |
|
|
for(i = 0; i < 3; i++) { |
217 |
|
|
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
218 |
|
|
} |
219 |
|
|
|
220 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
221 |
|
|
|
222 |
|
|
return ( diffEta <= etaTolerance ); |
223 |
|
|
} |
224 |
|
|
|
225 |
|
|
double NPrT::calcConservedQuantity(){ |
226 |
|
|
|
227 |
|
|
chi= currentSnapshot_->getChi(); |
228 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
229 |
|
|
loadEta(); |
230 |
|
|
|
231 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
232 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
233 |
|
|
// orientational degrees of freedom: |
234 |
|
|
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
235 |
|
|
|
236 |
|
|
// fkBT is used because the thermostat operates on more degrees of freedom |
237 |
|
|
// than the barostat (when there are particles with orientational degrees |
238 |
|
|
// of freedom). |
239 |
|
|
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
240 |
|
|
|
241 |
|
|
double conservedQuantity; |
242 |
|
|
double totalEnergy; |
243 |
|
|
double thermostat_kinetic; |
244 |
|
|
double thermostat_potential; |
245 |
|
|
double barostat_kinetic; |
246 |
|
|
double barostat_potential; |
247 |
|
|
double trEta; |
248 |
|
|
|
249 |
|
|
totalEnergy = thermo.getTotalE(); |
250 |
|
|
|
251 |
|
|
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
252 |
|
|
|
253 |
|
|
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
254 |
|
|
|
255 |
|
|
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
256 |
|
|
trEta = tmp.trace(); |
257 |
|
|
|
258 |
|
|
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
259 |
|
|
|
260 |
|
|
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
261 |
|
|
|
262 |
|
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 |
|
|
barostat_kinetic + barostat_potential; |
264 |
|
|
|
265 |
|
|
return conservedQuantity; |
266 |
|
|
|
267 |
|
|
} |
268 |
|
|
|
269 |
|
|
void NPrT::loadEta() { |
270 |
|
|
eta= currentSnapshot_->getEta(); |
271 |
|
|
|
272 |
|
|
//if (!eta.isDiagonal()) { |
273 |
|
|
// sprintf( painCave.errMsg, |
274 |
|
|
// "NPrT error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
275 |
|
|
// painCave.isFatal = 1; |
276 |
|
|
// simError(); |
277 |
|
|
//} |
278 |
|
|
} |
279 |
|
|
|
280 |
|
|
void NPrT::saveEta() { |
281 |
|
|
currentSnapshot_->setEta(eta); |
282 |
|
|
} |
283 |
|
|
|
284 |
|
|
} |
285 |
|
|
|
286 |
|
|
|