1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "brains/SimInfo.hpp" |
44 |
#include "brains/Thermo.hpp" |
45 |
#include "integrators/IntegratorCreator.hpp" |
46 |
#include "integrators/NPTxyz.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/PhysicalConstants.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
52 |
// modification of the Hoover algorithm: |
53 |
// |
54 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
55 |
// Molec. Phys., 78, 533. |
56 |
// |
57 |
// and |
58 |
// |
59 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
60 |
|
61 |
namespace OpenMD { |
62 |
|
63 |
|
64 |
RealType NPTxyz::calcConservedQuantity(){ |
65 |
thermostat = snap->getThermostat(); |
66 |
loadEta(); |
67 |
|
68 |
// We need NkBT a lot, so just set it here: This is the RAW number |
69 |
// of integrableObjects, so no subtraction or addition of constraints or |
70 |
// orientational degrees of freedom: |
71 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
72 |
|
73 |
// fkBT is used because the thermostat operates on more degrees of freedom |
74 |
// than the barostat (when there are particles with orientational degrees |
75 |
// of freedom). |
76 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
77 |
|
78 |
RealType conservedQuantity; |
79 |
RealType totalEnergy; |
80 |
RealType thermostat_kinetic; |
81 |
RealType thermostat_potential; |
82 |
RealType barostat_kinetic; |
83 |
RealType barostat_potential; |
84 |
RealType trEta; |
85 |
|
86 |
totalEnergy = thermo.getTotalEnergy(); |
87 |
|
88 |
thermostat_kinetic = fkBT * tt2 * thermostat.first * thermostat.first |
89 |
/ (2.0 * PhysicalConstants::energyConvert); |
90 |
|
91 |
thermostat_potential = fkBT* thermostat.second |
92 |
/ PhysicalConstants::energyConvert; |
93 |
|
94 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
95 |
trEta = tmp.trace(); |
96 |
|
97 |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
98 |
|
99 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
100 |
|
101 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
102 |
barostat_kinetic + barostat_potential; |
103 |
|
104 |
|
105 |
return conservedQuantity; |
106 |
|
107 |
} |
108 |
|
109 |
|
110 |
void NPTxyz::scaleSimBox(){ |
111 |
|
112 |
int i,j,k; |
113 |
Mat3x3d scaleMat; |
114 |
RealType eta2ij, scaleFactor; |
115 |
RealType bigScale, smallScale, offDiagMax; |
116 |
Mat3x3d hm; |
117 |
Mat3x3d hmnew; |
118 |
|
119 |
|
120 |
|
121 |
// Scale the box after all the positions have been moved: |
122 |
|
123 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
124 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
125 |
|
126 |
bigScale = 1.0; |
127 |
smallScale = 1.0; |
128 |
offDiagMax = 0.0; |
129 |
|
130 |
for(i=0; i<3; i++){ |
131 |
for(j=0; j<3; j++){ |
132 |
scaleMat(i, j) = 0.0; |
133 |
if(i==j) { |
134 |
scaleMat(i, j) = 1.0; |
135 |
} |
136 |
} |
137 |
} |
138 |
|
139 |
for(i=0;i<3;i++){ |
140 |
|
141 |
// calculate the scaleFactors |
142 |
|
143 |
scaleFactor = exp(dt*eta(i, i)); |
144 |
|
145 |
scaleMat(i, i) = scaleFactor; |
146 |
|
147 |
if (scaleMat(i, i) > bigScale) { |
148 |
bigScale = scaleMat(i, i); |
149 |
} |
150 |
|
151 |
if (scaleMat(i, i) < smallScale) { |
152 |
smallScale = scaleMat(i, i); |
153 |
} |
154 |
} |
155 |
|
156 |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
157 |
sprintf( painCave.errMsg, |
158 |
"NPTxyz error: Attempting a Box scaling of more than 10 percent.\n" |
159 |
" Check your tauBarostat, as it is probably too small!\n\n" |
160 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
161 |
" [%lf\t%lf\t%lf]\n" |
162 |
" [%lf\t%lf\t%lf]\n", |
163 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
164 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
165 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); |
166 |
painCave.isFatal = 1; |
167 |
simError(); |
168 |
} else { |
169 |
|
170 |
Mat3x3d hmat = snap->getHmat(); |
171 |
hmat = hmat *scaleMat; |
172 |
snap->setHmat(hmat); |
173 |
} |
174 |
} |
175 |
|
176 |
void NPTxyz::loadEta() { |
177 |
eta= snap->getBarostat(); |
178 |
} |
179 |
|
180 |
} |