1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include "brains/SimInfo.hpp" |
43 |
#include "brains/Thermo.hpp" |
44 |
#include "integrators/IntegratorCreator.hpp" |
45 |
#include "integrators/NPTsz.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
#include "utils/PhysicalConstants.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
/** |
53 |
* There is no known conserved quantity for the NPTsz integrator, |
54 |
* but we still compute the equivalent quantity from a fully |
55 |
* flexible constant pressure integrator. |
56 |
*/ |
57 |
RealType NPTsz::calcConservedQuantity(){ |
58 |
|
59 |
chi= currentSnapshot_->getChi(); |
60 |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
61 |
loadEta(); |
62 |
|
63 |
// We need NkBT a lot, so just set it here: This is the RAW number |
64 |
// of integrableObjects, so no subtraction or addition of |
65 |
// constraints or orientational degrees of freedom: |
66 |
NkBT = info_->getNGlobalIntegrableObjects() * |
67 |
PhysicalConstants::kB * targetTemp; |
68 |
|
69 |
// fkBT is used because the thermostat operates on more degrees of |
70 |
// freedom than the barostat (when there are particles with |
71 |
// orientational degrees of freedom). |
72 |
fkBT = info_->getNdf() * PhysicalConstants::kB * targetTemp; |
73 |
|
74 |
RealType conservedQuantity; |
75 |
RealType totalEnergy; |
76 |
RealType thermostat_kinetic; |
77 |
RealType thermostat_potential; |
78 |
RealType barostat_kinetic; |
79 |
RealType barostat_potential; |
80 |
RealType trEta; |
81 |
|
82 |
totalEnergy = thermo.getTotalE(); |
83 |
|
84 |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
85 |
(2.0 * PhysicalConstants::energyConvert); |
86 |
|
87 |
thermostat_potential = fkBT* integralOfChidt / |
88 |
PhysicalConstants::energyConvert; |
89 |
|
90 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
91 |
trEta = tmp.trace(); |
92 |
|
93 |
barostat_kinetic = NkBT * tb2 * trEta / |
94 |
(2.0 * PhysicalConstants::energyConvert); |
95 |
|
96 |
barostat_potential = (targetPressure * thermo.getVolume() / |
97 |
PhysicalConstants::pressureConvert) / |
98 |
PhysicalConstants::energyConvert; |
99 |
|
100 |
conservedQuantity = totalEnergy + thermostat_kinetic + |
101 |
thermostat_potential + barostat_kinetic + barostat_potential; |
102 |
|
103 |
return conservedQuantity; |
104 |
} |
105 |
|
106 |
|
107 |
void NPTsz::scaleSimBox(){ |
108 |
|
109 |
int i,j,k; |
110 |
Mat3x3d scaleMat; |
111 |
RealType eta2ij, scaleFactor; |
112 |
RealType bigScale, smallScale, offDiagMax; |
113 |
Mat3x3d hm; |
114 |
Mat3x3d hmnew; |
115 |
|
116 |
// Scale the box after all the positions have been moved: |
117 |
|
118 |
// Use a taylor expansion for eta products: |
119 |
// Hmat = Hmat . exp(dt * etaMat) |
120 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
121 |
|
122 |
bigScale = 1.0; |
123 |
smallScale = 1.0; |
124 |
offDiagMax = 0.0; |
125 |
|
126 |
for(i=0; i<3; i++){ |
127 |
for(j=0; j<3; j++){ |
128 |
scaleMat(i, j) = 0.0; |
129 |
if(i==j) { |
130 |
scaleMat(i, j) = 1.0; |
131 |
} |
132 |
} |
133 |
} |
134 |
|
135 |
// scale x & y together: |
136 |
scaleFactor = 0.5 * (exp(dt*eta(0,0)) + exp(dt*eta(1,1) ) ); |
137 |
scaleMat(0,0) = scaleFactor; |
138 |
scaleMat(1,1) = scaleFactor; |
139 |
|
140 |
bigScale = scaleFactor; |
141 |
smallScale = scaleFactor; |
142 |
|
143 |
// scale z separately |
144 |
scaleFactor = exp(dt * eta(2,2)); |
145 |
scaleMat(2,2) = scaleFactor; |
146 |
if (scaleFactor > bigScale) bigScale = scaleFactor; |
147 |
if (scaleFactor < smallScale) smallScale = scaleFactor; |
148 |
|
149 |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
150 |
sprintf( painCave.errMsg, |
151 |
"NPTsz: Attempting a Box scaling of more than 10 percent.\n" |
152 |
"\tCheck your tauBarostat, as it is probably too small!\n\n" |
153 |
"\tscaleMat = [%lf\t%lf\t%lf]\n" |
154 |
"\t [%lf\t%lf\t%lf]\n" |
155 |
"\t [%lf\t%lf\t%lf]\n", |
156 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
157 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
158 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2)); |
159 |
painCave.severity = OPENMD_ERROR; |
160 |
painCave.isFatal = 1; |
161 |
simError(); |
162 |
} else { |
163 |
|
164 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
165 |
hmat = hmat *scaleMat; |
166 |
currentSnapshot_->setHmat(hmat); |
167 |
} |
168 |
} |
169 |
|
170 |
void NPTsz::loadEta() { |
171 |
eta= currentSnapshot_->getEta(); |
172 |
} |
173 |
} |