1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "NPTi.hpp" |
44 |
#include "brains/SimInfo.hpp" |
45 |
#include "brains/Thermo.hpp" |
46 |
#include "integrators/NPT.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/PhysicalConstants.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
// Basic isotropic thermostating and barostating via the Melchionna |
54 |
// modification of the Hoover algorithm: |
55 |
// |
56 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
57 |
// Molec. Phys., 78, 533. |
58 |
// |
59 |
// and |
60 |
// |
61 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
63 |
NPTi::NPTi ( SimInfo *info) : NPT(info){ |
64 |
|
65 |
} |
66 |
|
67 |
void NPTi::evolveEtaA() { |
68 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
69 |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
70 |
oldEta = eta; |
71 |
} |
72 |
|
73 |
void NPTi::evolveEtaB() { |
74 |
|
75 |
prevEta = eta; |
76 |
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
77 |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
78 |
} |
79 |
|
80 |
void NPTi::calcVelScale() { |
81 |
vScale = thermostat.first + eta; |
82 |
} |
83 |
|
84 |
void NPTi::getVelScaleA(Vector3d& sc, const Vector3d& vel) { |
85 |
sc = vel * vScale; |
86 |
} |
87 |
|
88 |
void NPTi::getVelScaleB(Vector3d& sc, int index ){ |
89 |
sc = oldVel[index] * vScale; |
90 |
} |
91 |
|
92 |
|
93 |
void NPTi::getPosScale(const Vector3d& pos, const Vector3d& COM, |
94 |
int index, Vector3d& sc){ |
95 |
/**@todo*/ |
96 |
sc = (oldPos[index] + pos)/(RealType)2.0 -COM; |
97 |
sc *= eta; |
98 |
} |
99 |
|
100 |
void NPTi::scaleSimBox(){ |
101 |
|
102 |
RealType scaleFactor; |
103 |
|
104 |
scaleFactor = exp(dt*eta); |
105 |
|
106 |
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
107 |
sprintf( painCave.errMsg, |
108 |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
109 |
" check your tauBarostat, as it is probably too small!\n" |
110 |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
111 |
); |
112 |
painCave.isFatal = 1; |
113 |
simError(); |
114 |
} else { |
115 |
Mat3x3d hmat = snap->getHmat(); |
116 |
hmat *= scaleFactor; |
117 |
snap->setHmat(hmat); |
118 |
} |
119 |
|
120 |
} |
121 |
|
122 |
bool NPTi::etaConverged() { |
123 |
|
124 |
return ( fabs(prevEta - eta) <= etaTolerance ); |
125 |
} |
126 |
|
127 |
RealType NPTi::calcConservedQuantity(){ |
128 |
|
129 |
thermostat = snap->getThermostat(); |
130 |
loadEta(); |
131 |
// We need NkBT a lot, so just set it here: This is the RAW number |
132 |
// of integrableObjects, so no subtraction or addition of constraints or |
133 |
// orientational degrees of freedom: |
134 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
135 |
|
136 |
// fkBT is used because the thermostat operates on more degrees of freedom |
137 |
// than the barostat (when there are particles with orientational degrees |
138 |
// of freedom). |
139 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
140 |
|
141 |
RealType conservedQuantity; |
142 |
RealType Energy; |
143 |
RealType thermostat_kinetic; |
144 |
RealType thermostat_potential; |
145 |
RealType barostat_kinetic; |
146 |
RealType barostat_potential; |
147 |
|
148 |
Energy =thermo.getTotalEnergy(); |
149 |
|
150 |
thermostat_kinetic = fkBT* tt2 * thermostat.first * |
151 |
thermostat.first / (2.0 * PhysicalConstants::energyConvert); |
152 |
|
153 |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
154 |
|
155 |
|
156 |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * PhysicalConstants::energyConvert); |
157 |
|
158 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) / |
159 |
PhysicalConstants::energyConvert; |
160 |
|
161 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
162 |
barostat_kinetic + barostat_potential; |
163 |
|
164 |
return conservedQuantity; |
165 |
} |
166 |
|
167 |
void NPTi::loadEta() { |
168 |
Mat3x3d etaMat = snap->getBarostat(); |
169 |
eta = etaMat(0,0); |
170 |
//if (fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || !etaMat.isDiagonal()) { |
171 |
// sprintf( painCave.errMsg, |
172 |
// "NPTi error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
173 |
// painCave.isFatal = 1; |
174 |
// simError(); |
175 |
//} |
176 |
} |
177 |
|
178 |
void NPTi::saveEta() { |
179 |
Mat3x3d etaMat(0.0); |
180 |
etaMat(0, 0) = eta; |
181 |
etaMat(1, 1) = eta; |
182 |
etaMat(2, 2) = eta; |
183 |
snap->setBarostat(etaMat); |
184 |
} |
185 |
} |