1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "brains/SimInfo.hpp" |
44 |
#include "brains/Thermo.hpp" |
45 |
#include "integrators/IntegratorCreator.hpp" |
46 |
#include "integrators/NPTf.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/PhysicalConstants.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
54 |
// modification of the Hoover algorithm: |
55 |
// |
56 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
57 |
// Molec. Phys., 78, 533. |
58 |
// |
59 |
// and |
60 |
// |
61 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
63 |
void NPTf::evolveEtaA() { |
64 |
|
65 |
int i, j; |
66 |
|
67 |
for(i = 0; i < 3; i ++){ |
68 |
for(j = 0; j < 3; j++){ |
69 |
if( i == j) { |
70 |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
71 |
} else { |
72 |
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
73 |
} |
74 |
} |
75 |
} |
76 |
|
77 |
for(i = 0; i < 3; i++) { |
78 |
for (j = 0; j < 3; j++) { |
79 |
oldEta(i, j) = eta(i, j); |
80 |
} |
81 |
} |
82 |
|
83 |
} |
84 |
|
85 |
void NPTf::evolveEtaB() { |
86 |
|
87 |
int i; |
88 |
int j; |
89 |
|
90 |
for(i = 0; i < 3; i++) { |
91 |
for (j = 0; j < 3; j++) { |
92 |
prevEta(i, j) = eta(i, j); |
93 |
} |
94 |
} |
95 |
|
96 |
for(i = 0; i < 3; i ++){ |
97 |
for(j = 0; j < 3; j++){ |
98 |
if( i == j) { |
99 |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
100 |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
101 |
} else { |
102 |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
103 |
} |
104 |
} |
105 |
} |
106 |
|
107 |
|
108 |
} |
109 |
|
110 |
void NPTf::calcVelScale(){ |
111 |
|
112 |
for (int i = 0; i < 3; i++ ) { |
113 |
for (int j = 0; j < 3; j++ ) { |
114 |
vScale(i, j) = eta(i, j); |
115 |
|
116 |
if (i == j) { |
117 |
vScale(i, j) += thermostat.first; |
118 |
} |
119 |
} |
120 |
} |
121 |
} |
122 |
|
123 |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
124 |
sc = vScale * vel; |
125 |
} |
126 |
|
127 |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
128 |
sc = vScale * oldVel[index]; |
129 |
} |
130 |
|
131 |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
132 |
|
133 |
/**@todo */ |
134 |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
135 |
sc = eta * rj; |
136 |
} |
137 |
|
138 |
void NPTf::scaleSimBox(){ |
139 |
|
140 |
int i; |
141 |
int j; |
142 |
int k; |
143 |
Mat3x3d scaleMat; |
144 |
RealType eta2ij; |
145 |
RealType bigScale, smallScale, offDiagMax; |
146 |
Mat3x3d hm; |
147 |
Mat3x3d hmnew; |
148 |
|
149 |
|
150 |
|
151 |
// Scale the box after all the positions have been moved: |
152 |
|
153 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
154 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
155 |
|
156 |
bigScale = 1.0; |
157 |
smallScale = 1.0; |
158 |
offDiagMax = 0.0; |
159 |
|
160 |
for(i=0; i<3; i++){ |
161 |
for(j=0; j<3; j++){ |
162 |
|
163 |
// Calculate the matrix Product of the eta array (we only need |
164 |
// the ij element right now): |
165 |
|
166 |
eta2ij = 0.0; |
167 |
for(k=0; k<3; k++){ |
168 |
eta2ij += eta(i, k) * eta(k, j); |
169 |
} |
170 |
|
171 |
scaleMat(i, j) = 0.0; |
172 |
// identity matrix (see above): |
173 |
if (i == j) scaleMat(i, j) = 1.0; |
174 |
// Taylor expansion for the exponential truncated at second order: |
175 |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
176 |
|
177 |
|
178 |
if (i != j) |
179 |
if (fabs(scaleMat(i, j)) > offDiagMax) |
180 |
offDiagMax = fabs(scaleMat(i, j)); |
181 |
} |
182 |
|
183 |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
184 |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
185 |
} |
186 |
|
187 |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
188 |
sprintf( painCave.errMsg, |
189 |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
190 |
" Check your tauBarostat, as it is probably too small!\n\n" |
191 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
192 |
" [%lf\t%lf\t%lf]\n" |
193 |
" [%lf\t%lf\t%lf]\n" |
194 |
" eta = [%lf\t%lf\t%lf]\n" |
195 |
" [%lf\t%lf\t%lf]\n" |
196 |
" [%lf\t%lf\t%lf]\n", |
197 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
198 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
199 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
200 |
eta(0, 0),eta(0, 1),eta(0, 2), |
201 |
eta(1, 0),eta(1, 1),eta(1, 2), |
202 |
eta(2, 0),eta(2, 1),eta(2, 2)); |
203 |
painCave.isFatal = 1; |
204 |
simError(); |
205 |
} else if (offDiagMax > 0.01) { |
206 |
sprintf( painCave.errMsg, |
207 |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
208 |
" Check your tauBarostat, as it is probably too small!\n\n" |
209 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
210 |
" [%lf\t%lf\t%lf]\n" |
211 |
" [%lf\t%lf\t%lf]\n" |
212 |
" eta = [%lf\t%lf\t%lf]\n" |
213 |
" [%lf\t%lf\t%lf]\n" |
214 |
" [%lf\t%lf\t%lf]\n", |
215 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
216 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
217 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
218 |
eta(0, 0),eta(0, 1),eta(0, 2), |
219 |
eta(1, 0),eta(1, 1),eta(1, 2), |
220 |
eta(2, 0),eta(2, 1),eta(2, 2)); |
221 |
painCave.isFatal = 1; |
222 |
simError(); |
223 |
} else { |
224 |
|
225 |
Mat3x3d hmat = snap->getHmat(); |
226 |
hmat = hmat *scaleMat; |
227 |
snap->setHmat(hmat); |
228 |
|
229 |
} |
230 |
} |
231 |
|
232 |
bool NPTf::etaConverged() { |
233 |
int i; |
234 |
RealType diffEta, sumEta; |
235 |
|
236 |
sumEta = 0; |
237 |
for(i = 0; i < 3; i++) { |
238 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
239 |
} |
240 |
|
241 |
diffEta = sqrt( sumEta / 3.0 ); |
242 |
|
243 |
return ( diffEta <= etaTolerance ); |
244 |
} |
245 |
|
246 |
RealType NPTf::calcConservedQuantity(){ |
247 |
|
248 |
thermostat = snap->getThermostat(); |
249 |
loadEta(); |
250 |
|
251 |
// We need NkBT a lot, so just set it here: This is the RAW number |
252 |
// of integrableObjects, so no subtraction or addition of constraints or |
253 |
// orientational degrees of freedom: |
254 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
255 |
|
256 |
// fkBT is used because the thermostat operates on more degrees of freedom |
257 |
// than the barostat (when there are particles with orientational degrees |
258 |
// of freedom). |
259 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
260 |
|
261 |
RealType conservedQuantity; |
262 |
RealType totalEnergy; |
263 |
RealType thermostat_kinetic; |
264 |
RealType thermostat_potential; |
265 |
RealType barostat_kinetic; |
266 |
RealType barostat_potential; |
267 |
RealType trEta; |
268 |
|
269 |
totalEnergy = thermo.getTotalEnergy(); |
270 |
|
271 |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
272 |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
273 |
|
274 |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
275 |
|
276 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
277 |
trEta = tmp.trace(); |
278 |
|
279 |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
280 |
|
281 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
282 |
|
283 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
barostat_kinetic + barostat_potential; |
285 |
|
286 |
return conservedQuantity; |
287 |
|
288 |
} |
289 |
|
290 |
void NPTf::loadEta() { |
291 |
eta= snap->getBarostat(); |
292 |
|
293 |
//if (!eta.isDiagonal()) { |
294 |
// sprintf( painCave.errMsg, |
295 |
// "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
296 |
// painCave.isFatal = 1; |
297 |
// simError(); |
298 |
//} |
299 |
} |
300 |
|
301 |
void NPTf::saveEta() { |
302 |
snap->setBarostat(eta); |
303 |
} |
304 |
|
305 |
} |