ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/NPTf.cpp
Revision: 1764
Committed: Tue Jul 3 18:32:27 2012 UTC (12 years, 9 months ago) by gezelter
File size: 9314 byte(s)
Log Message:
Refactored Snapshot and Stats to use the Accumulator classes.  Collected
a number of methods into Thermo that belonged there.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "brains/SimInfo.hpp"
44 #include "brains/Thermo.hpp"
45 #include "integrators/IntegratorCreator.hpp"
46 #include "integrators/NPTf.hpp"
47 #include "primitives/Molecule.hpp"
48 #include "utils/PhysicalConstants.hpp"
49 #include "utils/simError.h"
50
51 namespace OpenMD {
52
53 // Basic non-isotropic thermostating and barostating via the Melchionna
54 // modification of the Hoover algorithm:
55 //
56 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
57 // Molec. Phys., 78, 533.
58 //
59 // and
60 //
61 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
62
63 void NPTf::evolveEtaA() {
64
65 int i, j;
66
67 for(i = 0; i < 3; i ++){
68 for(j = 0; j < 3; j++){
69 if( i == j) {
70 eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2);
71 } else {
72 eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2);
73 }
74 }
75 }
76
77 for(i = 0; i < 3; i++) {
78 for (j = 0; j < 3; j++) {
79 oldEta(i, j) = eta(i, j);
80 }
81 }
82
83 }
84
85 void NPTf::evolveEtaB() {
86
87 int i;
88 int j;
89
90 for(i = 0; i < 3; i++) {
91 for (j = 0; j < 3; j++) {
92 prevEta(i, j) = eta(i, j);
93 }
94 }
95
96 for(i = 0; i < 3; i ++){
97 for(j = 0; j < 3; j++){
98 if( i == j) {
99 eta(i, j) = oldEta(i, j) + dt2 * instaVol *
100 (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2);
101 } else {
102 eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2);
103 }
104 }
105 }
106
107
108 }
109
110 void NPTf::calcVelScale(){
111
112 for (int i = 0; i < 3; i++ ) {
113 for (int j = 0; j < 3; j++ ) {
114 vScale(i, j) = eta(i, j);
115
116 if (i == j) {
117 vScale(i, j) += thermostat.first;
118 }
119 }
120 }
121 }
122
123 void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){
124 sc = vScale * vel;
125 }
126
127 void NPTf::getVelScaleB(Vector3d& sc, int index ) {
128 sc = vScale * oldVel[index];
129 }
130
131 void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) {
132
133 /**@todo */
134 Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM;
135 sc = eta * rj;
136 }
137
138 void NPTf::scaleSimBox(){
139
140 int i;
141 int j;
142 int k;
143 Mat3x3d scaleMat;
144 RealType eta2ij;
145 RealType bigScale, smallScale, offDiagMax;
146 Mat3x3d hm;
147 Mat3x3d hmnew;
148
149
150
151 // Scale the box after all the positions have been moved:
152
153 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
154 // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
155
156 bigScale = 1.0;
157 smallScale = 1.0;
158 offDiagMax = 0.0;
159
160 for(i=0; i<3; i++){
161 for(j=0; j<3; j++){
162
163 // Calculate the matrix Product of the eta array (we only need
164 // the ij element right now):
165
166 eta2ij = 0.0;
167 for(k=0; k<3; k++){
168 eta2ij += eta(i, k) * eta(k, j);
169 }
170
171 scaleMat(i, j) = 0.0;
172 // identity matrix (see above):
173 if (i == j) scaleMat(i, j) = 1.0;
174 // Taylor expansion for the exponential truncated at second order:
175 scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij;
176
177
178 if (i != j)
179 if (fabs(scaleMat(i, j)) > offDiagMax)
180 offDiagMax = fabs(scaleMat(i, j));
181 }
182
183 if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i);
184 if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i);
185 }
186
187 if ((bigScale > 1.01) || (smallScale < 0.99)) {
188 sprintf( painCave.errMsg,
189 "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
190 " Check your tauBarostat, as it is probably too small!\n\n"
191 " scaleMat = [%lf\t%lf\t%lf]\n"
192 " [%lf\t%lf\t%lf]\n"
193 " [%lf\t%lf\t%lf]\n"
194 " eta = [%lf\t%lf\t%lf]\n"
195 " [%lf\t%lf\t%lf]\n"
196 " [%lf\t%lf\t%lf]\n",
197 scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
198 scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
199 scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
200 eta(0, 0),eta(0, 1),eta(0, 2),
201 eta(1, 0),eta(1, 1),eta(1, 2),
202 eta(2, 0),eta(2, 1),eta(2, 2));
203 painCave.isFatal = 1;
204 simError();
205 } else if (offDiagMax > 0.01) {
206 sprintf( painCave.errMsg,
207 "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
208 " Check your tauBarostat, as it is probably too small!\n\n"
209 " scaleMat = [%lf\t%lf\t%lf]\n"
210 " [%lf\t%lf\t%lf]\n"
211 " [%lf\t%lf\t%lf]\n"
212 " eta = [%lf\t%lf\t%lf]\n"
213 " [%lf\t%lf\t%lf]\n"
214 " [%lf\t%lf\t%lf]\n",
215 scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
216 scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
217 scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
218 eta(0, 0),eta(0, 1),eta(0, 2),
219 eta(1, 0),eta(1, 1),eta(1, 2),
220 eta(2, 0),eta(2, 1),eta(2, 2));
221 painCave.isFatal = 1;
222 simError();
223 } else {
224
225 Mat3x3d hmat = snap->getHmat();
226 hmat = hmat *scaleMat;
227 snap->setHmat(hmat);
228
229 }
230 }
231
232 bool NPTf::etaConverged() {
233 int i;
234 RealType diffEta, sumEta;
235
236 sumEta = 0;
237 for(i = 0; i < 3; i++) {
238 sumEta += pow(prevEta(i, i) - eta(i, i), 2);
239 }
240
241 diffEta = sqrt( sumEta / 3.0 );
242
243 return ( diffEta <= etaTolerance );
244 }
245
246 RealType NPTf::calcConservedQuantity(){
247
248 thermostat = snap->getThermostat();
249 loadEta();
250
251 // We need NkBT a lot, so just set it here: This is the RAW number
252 // of integrableObjects, so no subtraction or addition of constraints or
253 // orientational degrees of freedom:
254 NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp;
255
256 // fkBT is used because the thermostat operates on more degrees of freedom
257 // than the barostat (when there are particles with orientational degrees
258 // of freedom).
259 fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp;
260
261 RealType conservedQuantity;
262 RealType totalEnergy;
263 RealType thermostat_kinetic;
264 RealType thermostat_potential;
265 RealType barostat_kinetic;
266 RealType barostat_potential;
267 RealType trEta;
268
269 totalEnergy = thermo.getTotalEnergy();
270
271 thermostat_kinetic = fkBT * tt2 * thermostat.first *
272 thermostat.first /(2.0 * PhysicalConstants::energyConvert);
273
274 thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert;
275
276 SquareMatrix<RealType, 3> tmp = eta.transpose() * eta;
277 trEta = tmp.trace();
278
279 barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert);
280
281 barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert;
282
283 conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
284 barostat_kinetic + barostat_potential;
285
286 return conservedQuantity;
287
288 }
289
290 void NPTf::loadEta() {
291 eta= snap->getBarostat();
292
293 //if (!eta.isDiagonal()) {
294 // sprintf( painCave.errMsg,
295 // "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix");
296 // painCave.isFatal = 1;
297 // simError();
298 //}
299 }
300
301 void NPTf::saveEta() {
302 snap->setBarostat(eta);
303 }
304
305 }

Properties

Name Value
svn:keywords Author Id Revision Date