1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
246 |
*/ |
41 |
|
|
|
42 |
tim |
3 |
#include "brains/SimInfo.hpp" |
43 |
|
|
#include "brains/Thermo.hpp" |
44 |
gezelter |
246 |
#include "integrators/IntegratorCreator.hpp" |
45 |
|
|
#include "integrators/NPTf.hpp" |
46 |
|
|
#include "primitives/Molecule.hpp" |
47 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
48 |
tim |
3 |
#include "utils/simError.h" |
49 |
gezelter |
2 |
|
50 |
gezelter |
1390 |
namespace OpenMD { |
51 |
gezelter |
2 |
|
52 |
gezelter |
507 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
53 |
|
|
// modification of the Hoover algorithm: |
54 |
|
|
// |
55 |
|
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
56 |
|
|
// Molec. Phys., 78, 533. |
57 |
|
|
// |
58 |
|
|
// and |
59 |
|
|
// |
60 |
|
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
61 |
gezelter |
2 |
|
62 |
gezelter |
507 |
void NPTf::evolveEtaA() { |
63 |
gezelter |
2 |
|
64 |
gezelter |
507 |
int i, j; |
65 |
gezelter |
2 |
|
66 |
gezelter |
246 |
for(i = 0; i < 3; i ++){ |
67 |
gezelter |
507 |
for(j = 0; j < 3; j++){ |
68 |
|
|
if( i == j) { |
69 |
gezelter |
1390 |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
70 |
gezelter |
507 |
} else { |
71 |
|
|
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
72 |
|
|
} |
73 |
|
|
} |
74 |
gezelter |
2 |
} |
75 |
gezelter |
246 |
|
76 |
|
|
for(i = 0; i < 3; i++) { |
77 |
gezelter |
507 |
for (j = 0; j < 3; j++) { |
78 |
gezelter |
246 |
oldEta(i, j) = eta(i, j); |
79 |
gezelter |
507 |
} |
80 |
gezelter |
2 |
} |
81 |
gezelter |
246 |
|
82 |
gezelter |
507 |
} |
83 |
gezelter |
2 |
|
84 |
gezelter |
507 |
void NPTf::evolveEtaB() { |
85 |
gezelter |
2 |
|
86 |
gezelter |
246 |
int i; |
87 |
|
|
int j; |
88 |
gezelter |
2 |
|
89 |
gezelter |
246 |
for(i = 0; i < 3; i++) { |
90 |
gezelter |
507 |
for (j = 0; j < 3; j++) { |
91 |
|
|
prevEta(i, j) = eta(i, j); |
92 |
|
|
} |
93 |
gezelter |
246 |
} |
94 |
gezelter |
2 |
|
95 |
gezelter |
246 |
for(i = 0; i < 3; i ++){ |
96 |
gezelter |
507 |
for(j = 0; j < 3; j++){ |
97 |
|
|
if( i == j) { |
98 |
|
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
99 |
gezelter |
1390 |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
100 |
gezelter |
507 |
} else { |
101 |
|
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
102 |
|
|
} |
103 |
|
|
} |
104 |
gezelter |
246 |
} |
105 |
gezelter |
2 |
|
106 |
|
|
|
107 |
gezelter |
507 |
} |
108 |
gezelter |
2 |
|
109 |
gezelter |
507 |
void NPTf::calcVelScale(){ |
110 |
gezelter |
2 |
|
111 |
gezelter |
507 |
for (int i = 0; i < 3; i++ ) { |
112 |
|
|
for (int j = 0; j < 3; j++ ) { |
113 |
|
|
vScale(i, j) = eta(i, j); |
114 |
gezelter |
2 |
|
115 |
gezelter |
507 |
if (i == j) { |
116 |
|
|
vScale(i, j) += chi; |
117 |
|
|
} |
118 |
gezelter |
2 |
} |
119 |
|
|
} |
120 |
|
|
} |
121 |
|
|
|
122 |
gezelter |
507 |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
123 |
gezelter |
246 |
sc = vScale * vel; |
124 |
gezelter |
507 |
} |
125 |
gezelter |
2 |
|
126 |
gezelter |
507 |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
127 |
|
|
sc = vScale * oldVel[index]; |
128 |
|
|
} |
129 |
gezelter |
2 |
|
130 |
gezelter |
507 |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
131 |
gezelter |
2 |
|
132 |
gezelter |
246 |
/**@todo */ |
133 |
tim |
963 |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
134 |
gezelter |
246 |
sc = eta * rj; |
135 |
gezelter |
507 |
} |
136 |
gezelter |
2 |
|
137 |
gezelter |
507 |
void NPTf::scaleSimBox(){ |
138 |
gezelter |
2 |
|
139 |
gezelter |
507 |
int i; |
140 |
|
|
int j; |
141 |
|
|
int k; |
142 |
|
|
Mat3x3d scaleMat; |
143 |
tim |
963 |
RealType eta2ij; |
144 |
|
|
RealType bigScale, smallScale, offDiagMax; |
145 |
gezelter |
507 |
Mat3x3d hm; |
146 |
|
|
Mat3x3d hmnew; |
147 |
gezelter |
2 |
|
148 |
|
|
|
149 |
|
|
|
150 |
gezelter |
507 |
// Scale the box after all the positions have been moved: |
151 |
gezelter |
2 |
|
152 |
gezelter |
507 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
153 |
|
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
154 |
gezelter |
2 |
|
155 |
gezelter |
507 |
bigScale = 1.0; |
156 |
|
|
smallScale = 1.0; |
157 |
|
|
offDiagMax = 0.0; |
158 |
gezelter |
2 |
|
159 |
gezelter |
507 |
for(i=0; i<3; i++){ |
160 |
|
|
for(j=0; j<3; j++){ |
161 |
gezelter |
2 |
|
162 |
gezelter |
507 |
// Calculate the matrix Product of the eta array (we only need |
163 |
|
|
// the ij element right now): |
164 |
gezelter |
2 |
|
165 |
gezelter |
507 |
eta2ij = 0.0; |
166 |
|
|
for(k=0; k<3; k++){ |
167 |
|
|
eta2ij += eta(i, k) * eta(k, j); |
168 |
|
|
} |
169 |
gezelter |
2 |
|
170 |
gezelter |
507 |
scaleMat(i, j) = 0.0; |
171 |
|
|
// identity matrix (see above): |
172 |
|
|
if (i == j) scaleMat(i, j) = 1.0; |
173 |
|
|
// Taylor expansion for the exponential truncated at second order: |
174 |
|
|
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
175 |
gezelter |
2 |
|
176 |
|
|
|
177 |
gezelter |
507 |
if (i != j) |
178 |
|
|
if (fabs(scaleMat(i, j)) > offDiagMax) |
179 |
|
|
offDiagMax = fabs(scaleMat(i, j)); |
180 |
|
|
} |
181 |
|
|
|
182 |
|
|
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
183 |
|
|
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
184 |
gezelter |
2 |
} |
185 |
|
|
|
186 |
gezelter |
507 |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
187 |
|
|
sprintf( painCave.errMsg, |
188 |
|
|
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
189 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
190 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
191 |
|
|
" [%lf\t%lf\t%lf]\n" |
192 |
|
|
" [%lf\t%lf\t%lf]\n" |
193 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
194 |
|
|
" [%lf\t%lf\t%lf]\n" |
195 |
|
|
" [%lf\t%lf\t%lf]\n", |
196 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
197 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
198 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
199 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
200 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
201 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
202 |
|
|
painCave.isFatal = 1; |
203 |
|
|
simError(); |
204 |
|
|
} else if (offDiagMax > 0.01) { |
205 |
|
|
sprintf( painCave.errMsg, |
206 |
|
|
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
207 |
|
|
" Check your tauBarostat, as it is probably too small!\n\n" |
208 |
|
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
209 |
|
|
" [%lf\t%lf\t%lf]\n" |
210 |
|
|
" [%lf\t%lf\t%lf]\n" |
211 |
|
|
" eta = [%lf\t%lf\t%lf]\n" |
212 |
|
|
" [%lf\t%lf\t%lf]\n" |
213 |
|
|
" [%lf\t%lf\t%lf]\n", |
214 |
|
|
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
215 |
|
|
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
216 |
|
|
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
217 |
|
|
eta(0, 0),eta(0, 1),eta(0, 2), |
218 |
|
|
eta(1, 0),eta(1, 1),eta(1, 2), |
219 |
|
|
eta(2, 0),eta(2, 1),eta(2, 2)); |
220 |
|
|
painCave.isFatal = 1; |
221 |
|
|
simError(); |
222 |
|
|
} else { |
223 |
gezelter |
2 |
|
224 |
gezelter |
507 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
225 |
|
|
hmat = hmat *scaleMat; |
226 |
|
|
currentSnapshot_->setHmat(hmat); |
227 |
gezelter |
246 |
|
228 |
gezelter |
507 |
} |
229 |
gezelter |
2 |
} |
230 |
|
|
|
231 |
gezelter |
507 |
bool NPTf::etaConverged() { |
232 |
gezelter |
246 |
int i; |
233 |
tim |
963 |
RealType diffEta, sumEta; |
234 |
gezelter |
2 |
|
235 |
gezelter |
246 |
sumEta = 0; |
236 |
|
|
for(i = 0; i < 3; i++) { |
237 |
gezelter |
507 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
238 |
gezelter |
246 |
} |
239 |
|
|
|
240 |
|
|
diffEta = sqrt( sumEta / 3.0 ); |
241 |
gezelter |
2 |
|
242 |
gezelter |
246 |
return ( diffEta <= etaTolerance ); |
243 |
gezelter |
507 |
} |
244 |
gezelter |
2 |
|
245 |
tim |
963 |
RealType NPTf::calcConservedQuantity(){ |
246 |
gezelter |
2 |
|
247 |
gezelter |
246 |
chi= currentSnapshot_->getChi(); |
248 |
|
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
249 |
|
|
loadEta(); |
250 |
|
|
|
251 |
|
|
// We need NkBT a lot, so just set it here: This is the RAW number |
252 |
|
|
// of integrableObjects, so no subtraction or addition of constraints or |
253 |
|
|
// orientational degrees of freedom: |
254 |
gezelter |
1390 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
255 |
gezelter |
2 |
|
256 |
gezelter |
246 |
// fkBT is used because the thermostat operates on more degrees of freedom |
257 |
|
|
// than the barostat (when there are particles with orientational degrees |
258 |
|
|
// of freedom). |
259 |
gezelter |
1390 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
260 |
gezelter |
246 |
|
261 |
tim |
963 |
RealType conservedQuantity; |
262 |
|
|
RealType totalEnergy; |
263 |
|
|
RealType thermostat_kinetic; |
264 |
|
|
RealType thermostat_potential; |
265 |
|
|
RealType barostat_kinetic; |
266 |
|
|
RealType barostat_potential; |
267 |
|
|
RealType trEta; |
268 |
gezelter |
2 |
|
269 |
gezelter |
246 |
totalEnergy = thermo.getTotalE(); |
270 |
gezelter |
2 |
|
271 |
gezelter |
1390 |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); |
272 |
gezelter |
2 |
|
273 |
gezelter |
1390 |
thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
274 |
gezelter |
2 |
|
275 |
tim |
963 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
276 |
gezelter |
246 |
trEta = tmp.trace(); |
277 |
|
|
|
278 |
gezelter |
1390 |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
279 |
gezelter |
2 |
|
280 |
gezelter |
1390 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
281 |
gezelter |
2 |
|
282 |
gezelter |
246 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
283 |
gezelter |
507 |
barostat_kinetic + barostat_potential; |
284 |
gezelter |
2 |
|
285 |
gezelter |
246 |
return conservedQuantity; |
286 |
gezelter |
2 |
|
287 |
gezelter |
507 |
} |
288 |
gezelter |
2 |
|
289 |
gezelter |
507 |
void NPTf::loadEta() { |
290 |
gezelter |
246 |
eta= currentSnapshot_->getEta(); |
291 |
gezelter |
2 |
|
292 |
gezelter |
246 |
//if (!eta.isDiagonal()) { |
293 |
|
|
// sprintf( painCave.errMsg, |
294 |
|
|
// "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
295 |
|
|
// painCave.isFatal = 1; |
296 |
|
|
// simError(); |
297 |
|
|
//} |
298 |
gezelter |
507 |
} |
299 |
gezelter |
2 |
|
300 |
gezelter |
507 |
void NPTf::saveEta() { |
301 |
gezelter |
246 |
currentSnapshot_->setEta(eta); |
302 |
gezelter |
507 |
} |
303 |
gezelter |
2 |
|
304 |
|
|
} |