1 |
/* |
2 |
* Copyright (c) 2008, 2009, 2010 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
#include <fstream> |
43 |
#include <iostream> |
44 |
#include "integrators/LangevinHullForceManager.hpp" |
45 |
#include "utils/PhysicalConstants.hpp" |
46 |
#include "math/ConvexHull.hpp" |
47 |
#include "math/AlphaHull.hpp" |
48 |
#include "math/Triangle.hpp" |
49 |
#include "math/CholeskyDecomposition.hpp" |
50 |
#ifdef IS_MPI |
51 |
#include <mpi.h> |
52 |
#endif |
53 |
|
54 |
using namespace std; |
55 |
namespace OpenMD { |
56 |
|
57 |
LangevinHullForceManager::LangevinHullForceManager(SimInfo* info) : |
58 |
ForceManager(info) { |
59 |
|
60 |
simParams = info->getSimParams(); |
61 |
veloMunge = new Velocitizer(info); |
62 |
|
63 |
// Create Hull, Convex Hull for now, other options later. |
64 |
|
65 |
stringToEnumMap_["Convex"] = hullConvex; |
66 |
stringToEnumMap_["AlphaShape"] = hullAlphaShape; |
67 |
stringToEnumMap_["Unknown"] = hullUnknown; |
68 |
|
69 |
const std::string ht = simParams->getHULL_Method(); |
70 |
|
71 |
std::map<std::string, HullTypeEnum>::iterator iter; |
72 |
iter = stringToEnumMap_.find(ht); |
73 |
hullType_ = (iter == stringToEnumMap_.end()) ? |
74 |
LangevinHullForceManager::hullUnknown : iter->second; |
75 |
|
76 |
switch(hullType_) { |
77 |
case hullConvex : |
78 |
surfaceMesh_ = new ConvexHull(); |
79 |
break; |
80 |
case hullAlphaShape : |
81 |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
82 |
break; |
83 |
case hullUnknown : |
84 |
default : |
85 |
sprintf(painCave.errMsg, |
86 |
"LangevinHallForceManager: Unknown Hull_Method was requested!\n"); |
87 |
painCave.isFatal = 1; |
88 |
simError(); |
89 |
break; |
90 |
} |
91 |
|
92 |
doThermalCoupling_ = true; |
93 |
doPressureCoupling_ = true; |
94 |
|
95 |
/* Check that the simulation has target pressure and target |
96 |
temperature set */ |
97 |
if (!simParams->haveTargetTemp()) { |
98 |
sprintf(painCave.errMsg, |
99 |
"LangevinHullForceManager: no targetTemp (K) was set.\n" |
100 |
"\tOpenMD is turning off the thermal coupling to the bath.\n"); |
101 |
painCave.isFatal = 0; |
102 |
painCave.severity = OPENMD_INFO; |
103 |
simError(); |
104 |
doThermalCoupling_ = false; |
105 |
} else { |
106 |
targetTemp_ = simParams->getTargetTemp(); |
107 |
} |
108 |
|
109 |
if (!simParams->haveTargetPressure()) { |
110 |
sprintf(painCave.errMsg, |
111 |
"LangevinHullForceManager: no targetPressure (atm) was set.\n" |
112 |
"\tOpenMD is turning off the pressure coupling to the bath.\n"); |
113 |
painCave.isFatal = 0; |
114 |
painCave.severity = OPENMD_INFO; |
115 |
simError(); |
116 |
doPressureCoupling_ = false; |
117 |
} else { |
118 |
// Convert pressure from atm -> amu/(fs^2*Ang) |
119 |
targetPressure_ = simParams->getTargetPressure() / |
120 |
PhysicalConstants::pressureConvert; |
121 |
} |
122 |
|
123 |
if (simParams->getUsePeriodicBoundaryConditions()) { |
124 |
sprintf(painCave.errMsg, |
125 |
"LangevinHallForceManager: You can't use the Langevin Hull\n" |
126 |
"\tintegrator with periodic boundary conditions turned on!\n"); |
127 |
painCave.isFatal = 1; |
128 |
simError(); |
129 |
} |
130 |
|
131 |
if (!simParams->haveViscosity()) { |
132 |
sprintf(painCave.errMsg, |
133 |
"LangevinHullForceManager: no viscosity was set.\n" |
134 |
"\tOpenMD is turning off the thermal coupling to the bath.\n"); |
135 |
painCave.isFatal = 0; |
136 |
painCave.severity = OPENMD_INFO; |
137 |
simError(); |
138 |
doThermalCoupling_ = false; |
139 |
}else{ |
140 |
viscosity_ = simParams->getViscosity(); |
141 |
} |
142 |
|
143 |
if ( fabs(viscosity_) < 1e-6 ) { |
144 |
sprintf(painCave.errMsg, |
145 |
"LangevinHullDynamics: The bath viscosity was set lower than\n" |
146 |
"\t1e-6 poise. OpenMD is turning off the thermal coupling to\n" |
147 |
"\tthe bath.\n"); |
148 |
painCave.isFatal = 0; |
149 |
painCave.severity = OPENMD_INFO; |
150 |
simError(); |
151 |
doThermalCoupling_ = false; |
152 |
} |
153 |
|
154 |
dt_ = simParams->getDt(); |
155 |
|
156 |
if (doThermalCoupling_) |
157 |
variance_ = 2.0 * PhysicalConstants::kb * targetTemp_ / dt_; |
158 |
|
159 |
// Build a vector of integrable objects to determine if the are |
160 |
// surface atoms |
161 |
Molecule* mol; |
162 |
StuntDouble* sd; |
163 |
SimInfo::MoleculeIterator i; |
164 |
Molecule::IntegrableObjectIterator j; |
165 |
|
166 |
for (mol = info_->beginMolecule(i); mol != NULL; |
167 |
mol = info_->nextMolecule(i)) { |
168 |
for (sd = mol->beginIntegrableObject(j); |
169 |
sd != NULL; |
170 |
sd = mol->nextIntegrableObject(j)) { |
171 |
localSites_.push_back(sd); |
172 |
} |
173 |
} |
174 |
|
175 |
// We need to make an initial guess at the bounding box in order |
176 |
// to compute long range forces in ForceMatrixDecomposition: |
177 |
|
178 |
// Compute surface Mesh |
179 |
surfaceMesh_->computeHull(localSites_); |
180 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
181 |
currSnapshot->setBoundingBox(surfaceMesh_->getBoundingBox()); |
182 |
} |
183 |
|
184 |
void LangevinHullForceManager::postCalculation(){ |
185 |
|
186 |
int nTriangles, thisFacet; |
187 |
RealType area, thisArea, thisMass; |
188 |
vector<Triangle> sMesh; |
189 |
Triangle thisTriangle; |
190 |
vector<Triangle>::iterator face; |
191 |
vector<StuntDouble*> vertexSDs; |
192 |
vector<StuntDouble*>::iterator vertex; |
193 |
|
194 |
Vector3d unitNormal, centroid, facetVel; |
195 |
Vector3d langevinForce, vertexForce; |
196 |
Vector3d extPressure, randomForce, dragForce; |
197 |
|
198 |
Mat3x3d hydroTensor, S; |
199 |
vector<Vector3d> randNums; |
200 |
|
201 |
// Compute surface Mesh |
202 |
surfaceMesh_->computeHull(localSites_); |
203 |
|
204 |
// Get total area and number of surface stunt doubles |
205 |
area = surfaceMesh_->getArea(); |
206 |
sMesh = surfaceMesh_->getMesh(); |
207 |
nTriangles = sMesh.size(); |
208 |
|
209 |
if (doThermalCoupling_) { |
210 |
// Generate all of the necessary random forces |
211 |
randNums = genTriangleForces(nTriangles, variance_); |
212 |
} |
213 |
|
214 |
// Loop over the mesh faces |
215 |
thisFacet = 0; |
216 |
for (face = sMesh.begin(); face != sMesh.end(); ++face){ |
217 |
thisTriangle = *face; |
218 |
vertexSDs = thisTriangle.getVertices(); |
219 |
thisArea = thisTriangle.getArea(); |
220 |
unitNormal = thisTriangle.getUnitNormal(); |
221 |
centroid = thisTriangle.getCentroid(); |
222 |
facetVel = thisTriangle.getFacetVelocity(); |
223 |
thisMass = thisTriangle.getFacetMass(); |
224 |
|
225 |
langevinForce = V3Zero; |
226 |
|
227 |
if (doPressureCoupling_) { |
228 |
extPressure = -unitNormal * (targetPressure_ * thisArea) / |
229 |
PhysicalConstants::energyConvert; |
230 |
langevinForce += extPressure; |
231 |
} |
232 |
|
233 |
if (doThermalCoupling_) { |
234 |
hydroTensor = thisTriangle.computeHydrodynamicTensor(viscosity_); |
235 |
hydroTensor *= PhysicalConstants::viscoConvert; |
236 |
CholeskyDecomposition(hydroTensor, S); |
237 |
randomForce = S * randNums[thisFacet++]; |
238 |
dragForce = -hydroTensor * facetVel; |
239 |
langevinForce += randomForce + dragForce; |
240 |
} |
241 |
|
242 |
// Apply triangle force to stuntdouble vertices |
243 |
for (vertex = vertexSDs.begin(); vertex != vertexSDs.end(); ++vertex){ |
244 |
if ((*vertex) != NULL){ |
245 |
vertexForce = langevinForce / RealType(3.0); |
246 |
(*vertex)->addFrc(vertexForce); |
247 |
} |
248 |
} |
249 |
} |
250 |
|
251 |
veloMunge->removeComDrift(); |
252 |
veloMunge->removeAngularDrift(); |
253 |
|
254 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
255 |
currSnapshot->setVolume(surfaceMesh_->getVolume()); |
256 |
currSnapshot->setHullVolume(surfaceMesh_->getVolume()); |
257 |
// update the bounding box for use by ForceMatrixDecomposition: |
258 |
currSnapshot->setBoundingBox(surfaceMesh_->getBoundingBox()); |
259 |
ForceManager::postCalculation(); |
260 |
} |
261 |
|
262 |
vector<Vector3d> LangevinHullForceManager::genTriangleForces(int nTriangles, |
263 |
RealType var) { |
264 |
// zero fill the random vector before starting: |
265 |
vector<Vector3d> gaussRand; |
266 |
gaussRand.resize(nTriangles); |
267 |
std::fill(gaussRand.begin(), gaussRand.end(), V3Zero); |
268 |
|
269 |
#ifdef IS_MPI |
270 |
if (worldRank == 0) { |
271 |
#endif |
272 |
for (int i = 0; i < nTriangles; i++) { |
273 |
gaussRand[i][0] = randNumGen_.randNorm(0.0, var); |
274 |
gaussRand[i][1] = randNumGen_.randNorm(0.0, var); |
275 |
gaussRand[i][2] = randNumGen_.randNorm(0.0, var); |
276 |
} |
277 |
#ifdef IS_MPI |
278 |
} |
279 |
#endif |
280 |
|
281 |
// push these out to the other processors |
282 |
|
283 |
#ifdef IS_MPI |
284 |
if (worldRank == 0) { |
285 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles*3, MPI::REALTYPE, 0); |
286 |
} else { |
287 |
MPI::COMM_WORLD.Bcast(&gaussRand[0], nTriangles*3, MPI::REALTYPE, 0); |
288 |
} |
289 |
#endif |
290 |
|
291 |
return gaussRand; |
292 |
} |
293 |
} |