ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/LDForceManager.cpp
Revision: 1710
Committed: Fri May 18 21:44:02 2012 UTC (12 years, 11 months ago) by gezelter
File size: 18154 byte(s)
Log Message:
Added an adapter layer between the AtomType and the rest of the code to 
handle the bolt-on capabilities of new types. 

Fixed a long-standing bug in how storageLayout was being set to the maximum
possible value.

Started to add infrastructure for Polarizable and fluc-Q calculations.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include <fstream>
43 #include <iostream>
44 #include "integrators/LDForceManager.hpp"
45 #include "math/CholeskyDecomposition.hpp"
46 #include "utils/PhysicalConstants.hpp"
47 #include "hydrodynamics/Sphere.hpp"
48 #include "hydrodynamics/Ellipsoid.hpp"
49 #include "utils/ElementsTable.hpp"
50 #include "types/LennardJonesAdapter.hpp"
51 #include "types/GayBerneAdapter.hpp"
52
53 namespace OpenMD {
54
55 LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) {
56 simParams = info->getSimParams();
57 veloMunge = new Velocitizer(info);
58
59 sphericalBoundaryConditions_ = false;
60 if (simParams->getUseSphericalBoundaryConditions()) {
61 sphericalBoundaryConditions_ = true;
62 if (simParams->haveLangevinBufferRadius()) {
63 langevinBufferRadius_ = simParams->getLangevinBufferRadius();
64 } else {
65 sprintf( painCave.errMsg,
66 "langevinBufferRadius must be specified "
67 "when useSphericalBoundaryConditions is turned on.\n");
68 painCave.severity = OPENMD_ERROR;
69 painCave.isFatal = 1;
70 simError();
71 }
72
73 if (simParams->haveFrozenBufferRadius()) {
74 frozenBufferRadius_ = simParams->getFrozenBufferRadius();
75 } else {
76 sprintf( painCave.errMsg,
77 "frozenBufferRadius must be specified "
78 "when useSphericalBoundaryConditions is turned on.\n");
79 painCave.severity = OPENMD_ERROR;
80 painCave.isFatal = 1;
81 simError();
82 }
83
84 if (frozenBufferRadius_ < langevinBufferRadius_) {
85 sprintf( painCave.errMsg,
86 "frozenBufferRadius has been set smaller than the "
87 "langevinBufferRadius. This is probably an error.\n");
88 painCave.severity = OPENMD_WARNING;
89 painCave.isFatal = 0;
90 simError();
91 }
92 }
93
94 // Build the hydroProp map:
95 std::map<std::string, HydroProp*> hydroPropMap;
96
97 Molecule* mol;
98 StuntDouble* integrableObject;
99 SimInfo::MoleculeIterator i;
100 Molecule::IntegrableObjectIterator j;
101 bool needHydroPropFile = false;
102
103 for (mol = info->beginMolecule(i); mol != NULL;
104 mol = info->nextMolecule(i)) {
105 for (integrableObject = mol->beginIntegrableObject(j);
106 integrableObject != NULL;
107 integrableObject = mol->nextIntegrableObject(j)) {
108
109 if (integrableObject->isRigidBody()) {
110 RigidBody* rb = static_cast<RigidBody*>(integrableObject);
111 if (rb->getNumAtoms() > 1) needHydroPropFile = true;
112 }
113
114 }
115 }
116
117
118 if (needHydroPropFile) {
119 if (simParams->haveHydroPropFile()) {
120 hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
121 } else {
122 sprintf( painCave.errMsg,
123 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
124 "\tis specified for rigidBodies which contain more than one atom\n"
125 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
126 painCave.severity = OPENMD_ERROR;
127 painCave.isFatal = 1;
128 simError();
129 }
130
131 for (mol = info->beginMolecule(i); mol != NULL;
132 mol = info->nextMolecule(i)) {
133 for (integrableObject = mol->beginIntegrableObject(j);
134 integrableObject != NULL;
135 integrableObject = mol->nextIntegrableObject(j)) {
136
137 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
138 if (iter != hydroPropMap.end()) {
139 hydroProps_.push_back(iter->second);
140 } else {
141 sprintf( painCave.errMsg,
142 "Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str());
143 painCave.severity = OPENMD_ERROR;
144 painCave.isFatal = 1;
145 simError();
146 }
147 }
148 }
149 } else {
150
151 std::map<std::string, HydroProp*> hydroPropMap;
152 for (mol = info->beginMolecule(i); mol != NULL;
153 mol = info->nextMolecule(i)) {
154 for (integrableObject = mol->beginIntegrableObject(j);
155 integrableObject != NULL;
156 integrableObject = mol->nextIntegrableObject(j)) {
157 Shape* currShape = NULL;
158
159 if (integrableObject->isAtom()){
160 Atom* atom = static_cast<Atom*>(integrableObject);
161 AtomType* atomType = atom->getAtomType();
162 GayBerneAdapter gba = GayBerneAdapter(atomType);
163 if (gba.isGayBerne()) {
164 currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0,
165 gba.getD() / 2.0,
166 Mat3x3d::identity());
167 } else {
168 LennardJonesAdapter lja = LennardJonesAdapter(atomType);
169 if (lja.isLennardJones()){
170 currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0);
171 } else {
172 int aNum = etab.GetAtomicNum((atom->getType()).c_str());
173 if (aNum != 0) {
174 currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
175 } else {
176 sprintf( painCave.errMsg,
177 "Could not find atom type in default element.txt\n");
178 painCave.severity = OPENMD_ERROR;
179 painCave.isFatal = 1;
180 simError();
181 }
182 }
183 }
184 }
185
186 if (!simParams->haveTargetTemp()) {
187 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
188 painCave.isFatal = 1;
189 painCave.severity = OPENMD_ERROR;
190 simError();
191 }
192
193 if (!simParams->haveViscosity()) {
194 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
195 painCave.isFatal = 1;
196 painCave.severity = OPENMD_ERROR;
197 simError();
198 }
199
200
201 HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
202 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType());
203 if (iter != hydroPropMap.end())
204 hydroProps_.push_back(iter->second);
205 else {
206 currHydroProp->complete();
207 hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp));
208 hydroProps_.push_back(currHydroProp);
209 }
210 }
211 }
212 }
213 variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
214 }
215
216 std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
217 std::map<std::string, HydroProp*> props;
218 std::ifstream ifs(filename.c_str());
219 if (ifs.is_open()) {
220
221 }
222
223 const unsigned int BufferSize = 65535;
224 char buffer[BufferSize];
225 while (ifs.getline(buffer, BufferSize)) {
226 HydroProp* currProp = new HydroProp(buffer);
227 props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
228 }
229
230 return props;
231 }
232
233 void LDForceManager::postCalculation(){
234 SimInfo::MoleculeIterator i;
235 Molecule::IntegrableObjectIterator j;
236 Molecule* mol;
237 StuntDouble* integrableObject;
238 RealType mass;
239 Vector3d pos;
240 Vector3d frc;
241 Mat3x3d A;
242 Mat3x3d Atrans;
243 Vector3d Tb;
244 Vector3d ji;
245 unsigned int index = 0;
246 bool doLangevinForces;
247 bool freezeMolecule;
248 int fdf;
249
250 fdf = 0;
251
252 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
253
254 doLangevinForces = true;
255 freezeMolecule = false;
256
257 if (sphericalBoundaryConditions_) {
258
259 Vector3d molPos = mol->getCom();
260 RealType molRad = molPos.length();
261
262 doLangevinForces = false;
263
264 if (molRad > langevinBufferRadius_) {
265 doLangevinForces = true;
266 freezeMolecule = false;
267 }
268 if (molRad > frozenBufferRadius_) {
269 doLangevinForces = false;
270 freezeMolecule = true;
271 }
272 }
273
274 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
275 integrableObject = mol->nextIntegrableObject(j)) {
276
277 if (freezeMolecule)
278 fdf += integrableObject->freeze();
279
280 if (doLangevinForces) {
281 mass = integrableObject->getMass();
282 if (integrableObject->isDirectional()){
283
284 // preliminaries for directional objects:
285
286 A = integrableObject->getA();
287 Atrans = A.transpose();
288 Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
289
290 //apply random force and torque at center of resistance
291
292 Vector3d randomForceBody;
293 Vector3d randomTorqueBody;
294 genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
295 Vector3d randomForceLab = Atrans * randomForceBody;
296 Vector3d randomTorqueLab = Atrans * randomTorqueBody;
297 integrableObject->addFrc(randomForceLab);
298 integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
299
300 Mat3x3d I = integrableObject->getI();
301 Vector3d omegaBody;
302
303 // What remains contains velocity explicitly, but the velocity required
304 // is at the full step: v(t + h), while we have initially the velocity
305 // at the half step: v(t + h/2). We need to iterate to converge the
306 // friction force and friction torque vectors.
307
308 // this is the velocity at the half-step:
309
310 Vector3d vel =integrableObject->getVel();
311 Vector3d angMom = integrableObject->getJ();
312
313 //estimate velocity at full-step using everything but friction forces:
314
315 frc = integrableObject->getFrc();
316 Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
317
318 Tb = integrableObject->lab2Body(integrableObject->getTrq());
319 Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;
320
321 Vector3d omegaLab;
322 Vector3d vcdLab;
323 Vector3d vcdBody;
324 Vector3d frictionForceBody;
325 Vector3d frictionForceLab(0.0);
326 Vector3d oldFFL; // used to test for convergence
327 Vector3d frictionTorqueBody(0.0);
328 Vector3d oldFTB; // used to test for convergence
329 Vector3d frictionTorqueLab;
330 RealType fdot;
331 RealType tdot;
332
333 //iteration starts here:
334
335 for (int k = 0; k < maxIterNum_; k++) {
336
337 if (integrableObject->isLinear()) {
338 int linearAxis = integrableObject->linearAxis();
339 int l = (linearAxis +1 )%3;
340 int m = (linearAxis +2 )%3;
341 omegaBody[l] = angMomStep[l] /I(l, l);
342 omegaBody[m] = angMomStep[m] /I(m, m);
343
344 } else {
345 omegaBody[0] = angMomStep[0] /I(0, 0);
346 omegaBody[1] = angMomStep[1] /I(1, 1);
347 omegaBody[2] = angMomStep[2] /I(2, 2);
348 }
349
350 omegaLab = Atrans * omegaBody;
351
352 // apply friction force and torque at center of resistance
353
354 vcdLab = velStep + cross(omegaLab, rcrLab);
355 vcdBody = A * vcdLab;
356 frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
357 oldFFL = frictionForceLab;
358 frictionForceLab = Atrans * frictionForceBody;
359 oldFTB = frictionTorqueBody;
360 frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
361 frictionTorqueLab = Atrans * frictionTorqueBody;
362
363 // re-estimate velocities at full-step using friction forces:
364
365 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
366 angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
367
368 // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
369
370 fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
371 tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
372
373 if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
374 break; // iteration ends here
375 }
376
377 integrableObject->addFrc(frictionForceLab);
378 integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
379
380
381 } else {
382 //spherical atom
383
384 Vector3d randomForce;
385 Vector3d randomTorque;
386 genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
387 integrableObject->addFrc(randomForce);
388
389 // What remains contains velocity explicitly, but the velocity required
390 // is at the full step: v(t + h), while we have initially the velocity
391 // at the half step: v(t + h/2). We need to iterate to converge the
392 // friction force vector.
393
394 // this is the velocity at the half-step:
395
396 Vector3d vel =integrableObject->getVel();
397
398 //estimate velocity at full-step using everything but friction forces:
399
400 frc = integrableObject->getFrc();
401 Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
402
403 Vector3d frictionForce(0.0);
404 Vector3d oldFF; // used to test for convergence
405 RealType fdot;
406
407 //iteration starts here:
408
409 for (int k = 0; k < maxIterNum_; k++) {
410
411 oldFF = frictionForce;
412 frictionForce = -hydroProps_[index]->getXitt() * velStep;
413
414 // re-estimate velocities at full-step using friction forces:
415
416 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
417
418 // check for convergence (if the vector has converged, fdot will be 1.0):
419
420 fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
421
422 if (fabs(1.0 - fdot) <= forceTolerance_)
423 break; // iteration ends here
424 }
425
426 integrableObject->addFrc(frictionForce);
427
428 }
429 }
430
431 ++index;
432
433 }
434 }
435
436 info_->setFdf(fdf);
437 veloMunge->removeComDrift();
438 // Remove angular drift if we are not using periodic boundary conditions.
439 if(!simParams->getUsePeriodicBoundaryConditions())
440 veloMunge->removeAngularDrift();
441
442 ForceManager::postCalculation();
443 }
444
445 void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
446
447
448 Vector<RealType, 6> Z;
449 Vector<RealType, 6> generalForce;
450
451 Z[0] = randNumGen_.randNorm(0, variance);
452 Z[1] = randNumGen_.randNorm(0, variance);
453 Z[2] = randNumGen_.randNorm(0, variance);
454 Z[3] = randNumGen_.randNorm(0, variance);
455 Z[4] = randNumGen_.randNorm(0, variance);
456 Z[5] = randNumGen_.randNorm(0, variance);
457
458 generalForce = hydroProps_[index]->getS()*Z;
459
460 force[0] = generalForce[0];
461 force[1] = generalForce[1];
462 force[2] = generalForce[2];
463 torque[0] = generalForce[3];
464 torque[1] = generalForce[4];
465 torque[2] = generalForce[5];
466
467 }
468
469 }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date