1 |
tim |
895 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
tim |
895 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
tim |
895 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
tim |
895 |
*/ |
41 |
|
|
#include <fstream> |
42 |
chuckv |
1120 |
#include <iostream> |
43 |
tim |
895 |
#include "integrators/LDForceManager.hpp" |
44 |
|
|
#include "math/CholeskyDecomposition.hpp" |
45 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
46 |
gezelter |
956 |
#include "hydrodynamics/Sphere.hpp" |
47 |
|
|
#include "hydrodynamics/Ellipsoid.hpp" |
48 |
gezelter |
1210 |
#include "utils/ElementsTable.hpp" |
49 |
gezelter |
956 |
|
50 |
gezelter |
1390 |
namespace OpenMD { |
51 |
tim |
895 |
|
52 |
gezelter |
1237 |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info), forceTolerance_(1e-6), maxIterNum_(4) { |
53 |
gezelter |
983 |
simParams = info->getSimParams(); |
54 |
|
|
veloMunge = new Velocitizer(info); |
55 |
|
|
|
56 |
gezelter |
945 |
sphericalBoundaryConditions_ = false; |
57 |
|
|
if (simParams->getUseSphericalBoundaryConditions()) { |
58 |
|
|
sphericalBoundaryConditions_ = true; |
59 |
|
|
if (simParams->haveLangevinBufferRadius()) { |
60 |
|
|
langevinBufferRadius_ = simParams->getLangevinBufferRadius(); |
61 |
|
|
} else { |
62 |
|
|
sprintf( painCave.errMsg, |
63 |
|
|
"langevinBufferRadius must be specified " |
64 |
|
|
"when useSphericalBoundaryConditions is turned on.\n"); |
65 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
66 |
gezelter |
945 |
painCave.isFatal = 1; |
67 |
|
|
simError(); |
68 |
|
|
} |
69 |
|
|
|
70 |
|
|
if (simParams->haveFrozenBufferRadius()) { |
71 |
|
|
frozenBufferRadius_ = simParams->getFrozenBufferRadius(); |
72 |
|
|
} else { |
73 |
|
|
sprintf( painCave.errMsg, |
74 |
|
|
"frozenBufferRadius must be specified " |
75 |
|
|
"when useSphericalBoundaryConditions is turned on.\n"); |
76 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
77 |
gezelter |
945 |
painCave.isFatal = 1; |
78 |
|
|
simError(); |
79 |
|
|
} |
80 |
tim |
895 |
|
81 |
gezelter |
945 |
if (frozenBufferRadius_ < langevinBufferRadius_) { |
82 |
|
|
sprintf( painCave.errMsg, |
83 |
|
|
"frozenBufferRadius has been set smaller than the " |
84 |
|
|
"langevinBufferRadius. This is probably an error.\n"); |
85 |
gezelter |
1390 |
painCave.severity = OPENMD_WARNING; |
86 |
gezelter |
945 |
painCave.isFatal = 0; |
87 |
|
|
simError(); |
88 |
|
|
} |
89 |
|
|
} |
90 |
gezelter |
956 |
|
91 |
|
|
// Build the hydroProp map: |
92 |
gezelter |
981 |
std::map<std::string, HydroProp*> hydroPropMap; |
93 |
gezelter |
956 |
|
94 |
tim |
895 |
Molecule* mol; |
95 |
|
|
StuntDouble* integrableObject; |
96 |
gezelter |
956 |
SimInfo::MoleculeIterator i; |
97 |
|
|
Molecule::IntegrableObjectIterator j; |
98 |
|
|
bool needHydroPropFile = false; |
99 |
|
|
|
100 |
|
|
for (mol = info->beginMolecule(i); mol != NULL; |
101 |
|
|
mol = info->nextMolecule(i)) { |
102 |
|
|
for (integrableObject = mol->beginIntegrableObject(j); |
103 |
|
|
integrableObject != NULL; |
104 |
gezelter |
945 |
integrableObject = mol->nextIntegrableObject(j)) { |
105 |
gezelter |
956 |
|
106 |
|
|
if (integrableObject->isRigidBody()) { |
107 |
|
|
RigidBody* rb = static_cast<RigidBody*>(integrableObject); |
108 |
|
|
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
109 |
gezelter |
945 |
} |
110 |
|
|
|
111 |
|
|
} |
112 |
tim |
895 |
} |
113 |
gezelter |
956 |
|
114 |
|
|
|
115 |
|
|
if (needHydroPropFile) { |
116 |
|
|
if (simParams->haveHydroPropFile()) { |
117 |
|
|
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
118 |
|
|
} else { |
119 |
|
|
sprintf( painCave.errMsg, |
120 |
gezelter |
1237 |
"HydroPropFile must be set to a file name if Langevin Dynamics\n" |
121 |
|
|
"\tis specified for rigidBodies which contain more than one atom\n" |
122 |
|
|
"\tTo create a HydroPropFile, run the \"Hydro\" program.\n"); |
123 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
124 |
gezelter |
956 |
painCave.isFatal = 1; |
125 |
|
|
simError(); |
126 |
|
|
} |
127 |
tim |
971 |
|
128 |
|
|
for (mol = info->beginMolecule(i); mol != NULL; |
129 |
|
|
mol = info->nextMolecule(i)) { |
130 |
|
|
for (integrableObject = mol->beginIntegrableObject(j); |
131 |
|
|
integrableObject != NULL; |
132 |
|
|
integrableObject = mol->nextIntegrableObject(j)) { |
133 |
|
|
|
134 |
gezelter |
981 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
135 |
tim |
971 |
if (iter != hydroPropMap.end()) { |
136 |
|
|
hydroProps_.push_back(iter->second); |
137 |
|
|
} else { |
138 |
|
|
sprintf( painCave.errMsg, |
139 |
|
|
"Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str()); |
140 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
141 |
tim |
971 |
painCave.isFatal = 1; |
142 |
|
|
simError(); |
143 |
|
|
} |
144 |
|
|
} |
145 |
gezelter |
956 |
} |
146 |
|
|
} else { |
147 |
gezelter |
981 |
|
148 |
|
|
std::map<std::string, HydroProp*> hydroPropMap; |
149 |
gezelter |
956 |
for (mol = info->beginMolecule(i); mol != NULL; |
150 |
|
|
mol = info->nextMolecule(i)) { |
151 |
|
|
for (integrableObject = mol->beginIntegrableObject(j); |
152 |
|
|
integrableObject != NULL; |
153 |
|
|
integrableObject = mol->nextIntegrableObject(j)) { |
154 |
|
|
Shape* currShape = NULL; |
155 |
xsun |
1185 |
|
156 |
|
|
if (integrableObject->isAtom()){ |
157 |
|
|
Atom* atom = static_cast<Atom*>(integrableObject); |
158 |
|
|
AtomType* atomType = atom->getAtomType(); |
159 |
gezelter |
956 |
if (atomType->isGayBerne()) { |
160 |
xsun |
1185 |
DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType); |
161 |
gezelter |
956 |
GenericData* data = dAtomType->getPropertyByName("GayBerne"); |
162 |
|
|
if (data != NULL) { |
163 |
|
|
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
164 |
|
|
|
165 |
|
|
if (gayBerneData != NULL) { |
166 |
|
|
GayBerneParam gayBerneParam = gayBerneData->getData(); |
167 |
|
|
currShape = new Ellipsoid(V3Zero, |
168 |
xsun |
1185 |
gayBerneParam.GB_l / 2.0, |
169 |
gezelter |
981 |
gayBerneParam.GB_d / 2.0, |
170 |
gezelter |
956 |
Mat3x3d::identity()); |
171 |
|
|
} else { |
172 |
|
|
sprintf( painCave.errMsg, |
173 |
|
|
"Can not cast GenericData to GayBerneParam\n"); |
174 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
175 |
gezelter |
956 |
painCave.isFatal = 1; |
176 |
|
|
simError(); |
177 |
|
|
} |
178 |
|
|
} else { |
179 |
|
|
sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n"); |
180 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
181 |
gezelter |
956 |
painCave.isFatal = 1; |
182 |
|
|
simError(); |
183 |
|
|
} |
184 |
xsun |
1185 |
} else { |
185 |
|
|
if (atomType->isLennardJones()){ |
186 |
|
|
GenericData* data = atomType->getPropertyByName("LennardJones"); |
187 |
|
|
if (data != NULL) { |
188 |
|
|
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
189 |
|
|
if (ljData != NULL) { |
190 |
|
|
LJParam ljParam = ljData->getData(); |
191 |
|
|
currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0); |
192 |
|
|
} else { |
193 |
|
|
sprintf( painCave.errMsg, |
194 |
|
|
"Can not cast GenericData to LJParam\n"); |
195 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
196 |
xsun |
1185 |
painCave.isFatal = 1; |
197 |
|
|
simError(); |
198 |
|
|
} |
199 |
|
|
} |
200 |
|
|
} else { |
201 |
gezelter |
1237 |
int aNum = etab.GetAtomicNum((atom->getType()).c_str()); |
202 |
|
|
if (aNum != 0) { |
203 |
|
|
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum)); |
204 |
gezelter |
956 |
} else { |
205 |
|
|
sprintf( painCave.errMsg, |
206 |
xsun |
1185 |
"Could not find atom type in default element.txt\n"); |
207 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
208 |
gezelter |
956 |
painCave.isFatal = 1; |
209 |
|
|
simError(); |
210 |
xsun |
1185 |
} |
211 |
gezelter |
956 |
} |
212 |
|
|
} |
213 |
|
|
} |
214 |
chuckv |
1293 |
|
215 |
|
|
if (!simParams->haveTargetTemp()) { |
216 |
|
|
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n"); |
217 |
|
|
painCave.isFatal = 1; |
218 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
219 |
chuckv |
1293 |
simError(); |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
if (!simParams->haveViscosity()) { |
223 |
|
|
sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n"); |
224 |
|
|
painCave.isFatal = 1; |
225 |
gezelter |
1390 |
painCave.severity = OPENMD_ERROR; |
226 |
chuckv |
1293 |
simError(); |
227 |
|
|
} |
228 |
|
|
|
229 |
|
|
|
230 |
gezelter |
981 |
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
231 |
|
|
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
232 |
gezelter |
956 |
if (iter != hydroPropMap.end()) |
233 |
|
|
hydroProps_.push_back(iter->second); |
234 |
|
|
else { |
235 |
gezelter |
981 |
currHydroProp->complete(); |
236 |
|
|
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp)); |
237 |
|
|
hydroProps_.push_back(currHydroProp); |
238 |
gezelter |
956 |
} |
239 |
|
|
} |
240 |
|
|
} |
241 |
|
|
} |
242 |
gezelter |
1390 |
variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt(); |
243 |
gezelter |
981 |
} |
244 |
gezelter |
956 |
|
245 |
gezelter |
981 |
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
246 |
|
|
std::map<std::string, HydroProp*> props; |
247 |
tim |
895 |
std::ifstream ifs(filename.c_str()); |
248 |
|
|
if (ifs.is_open()) { |
249 |
gezelter |
945 |
|
250 |
tim |
895 |
} |
251 |
gezelter |
945 |
|
252 |
tim |
895 |
const unsigned int BufferSize = 65535; |
253 |
|
|
char buffer[BufferSize]; |
254 |
|
|
while (ifs.getline(buffer, BufferSize)) { |
255 |
gezelter |
981 |
HydroProp* currProp = new HydroProp(buffer); |
256 |
|
|
props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp)); |
257 |
tim |
895 |
} |
258 |
gezelter |
981 |
|
259 |
tim |
895 |
return props; |
260 |
|
|
} |
261 |
gezelter |
981 |
|
262 |
gezelter |
1126 |
void LDForceManager::postCalculation(bool needStress){ |
263 |
tim |
895 |
SimInfo::MoleculeIterator i; |
264 |
|
|
Molecule::IntegrableObjectIterator j; |
265 |
|
|
Molecule* mol; |
266 |
|
|
StuntDouble* integrableObject; |
267 |
xsun |
1185 |
RealType mass; |
268 |
tim |
895 |
Vector3d pos; |
269 |
|
|
Vector3d frc; |
270 |
|
|
Mat3x3d A; |
271 |
tim |
904 |
Mat3x3d Atrans; |
272 |
tim |
895 |
Vector3d Tb; |
273 |
|
|
Vector3d ji; |
274 |
|
|
unsigned int index = 0; |
275 |
gezelter |
945 |
bool doLangevinForces; |
276 |
|
|
bool freezeMolecule; |
277 |
|
|
int fdf; |
278 |
gezelter |
983 |
|
279 |
chuckv |
1120 |
fdf = 0; |
280 |
gezelter |
983 |
|
281 |
tim |
895 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
282 |
gezelter |
970 |
|
283 |
|
|
doLangevinForces = true; |
284 |
|
|
freezeMolecule = false; |
285 |
|
|
|
286 |
gezelter |
945 |
if (sphericalBoundaryConditions_) { |
287 |
|
|
|
288 |
|
|
Vector3d molPos = mol->getCom(); |
289 |
tim |
963 |
RealType molRad = molPos.length(); |
290 |
chuckv |
1120 |
|
291 |
gezelter |
945 |
doLangevinForces = false; |
292 |
|
|
|
293 |
|
|
if (molRad > langevinBufferRadius_) { |
294 |
|
|
doLangevinForces = true; |
295 |
|
|
freezeMolecule = false; |
296 |
|
|
} |
297 |
|
|
if (molRad > frozenBufferRadius_) { |
298 |
|
|
doLangevinForces = false; |
299 |
|
|
freezeMolecule = true; |
300 |
|
|
} |
301 |
|
|
} |
302 |
|
|
|
303 |
gezelter |
956 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
304 |
|
|
integrableObject = mol->nextIntegrableObject(j)) { |
305 |
gezelter |
945 |
|
306 |
gezelter |
956 |
if (freezeMolecule) |
307 |
|
|
fdf += integrableObject->freeze(); |
308 |
|
|
|
309 |
chuckv |
1120 |
if (doLangevinForces) { |
310 |
xsun |
1185 |
mass = integrableObject->getMass(); |
311 |
tim |
895 |
if (integrableObject->isDirectional()){ |
312 |
gezelter |
1237 |
|
313 |
|
|
// preliminaries for directional objects: |
314 |
|
|
|
315 |
xsun |
1216 |
A = integrableObject->getA(); |
316 |
|
|
Atrans = A.transpose(); |
317 |
|
|
Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR(); |
318 |
xsun |
1185 |
|
319 |
gezelter |
1237 |
//apply random force and torque at center of resistance |
320 |
xsun |
1185 |
|
321 |
gezelter |
945 |
Vector3d randomForceBody; |
322 |
|
|
Vector3d randomTorqueBody; |
323 |
|
|
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
324 |
xsun |
1216 |
Vector3d randomForceLab = Atrans * randomForceBody; |
325 |
|
|
Vector3d randomTorqueLab = Atrans * randomTorqueBody; |
326 |
gezelter |
945 |
integrableObject->addFrc(randomForceLab); |
327 |
xsun |
1216 |
integrableObject->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab )); |
328 |
gezelter |
1237 |
|
329 |
|
|
Mat3x3d I = integrableObject->getI(); |
330 |
|
|
Vector3d omegaBody; |
331 |
|
|
|
332 |
|
|
// What remains contains velocity explicitly, but the velocity required |
333 |
|
|
// is at the full step: v(t + h), while we have initially the velocity |
334 |
|
|
// at the half step: v(t + h/2). We need to iterate to converge the |
335 |
|
|
// friction force and friction torque vectors. |
336 |
|
|
|
337 |
|
|
// this is the velocity at the half-step: |
338 |
gezelter |
945 |
|
339 |
gezelter |
1237 |
Vector3d vel =integrableObject->getVel(); |
340 |
|
|
Vector3d angMom = integrableObject->getJ(); |
341 |
|
|
|
342 |
|
|
//estimate velocity at full-step using everything but friction forces: |
343 |
|
|
|
344 |
|
|
frc = integrableObject->getFrc(); |
345 |
gezelter |
1390 |
Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc; |
346 |
gezelter |
1237 |
|
347 |
|
|
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
348 |
gezelter |
1390 |
Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb; |
349 |
gezelter |
1237 |
|
350 |
|
|
Vector3d omegaLab; |
351 |
|
|
Vector3d vcdLab; |
352 |
|
|
Vector3d vcdBody; |
353 |
|
|
Vector3d frictionForceBody; |
354 |
|
|
Vector3d frictionForceLab(0.0); |
355 |
|
|
Vector3d oldFFL; // used to test for convergence |
356 |
|
|
Vector3d frictionTorqueBody(0.0); |
357 |
|
|
Vector3d oldFTB; // used to test for convergence |
358 |
|
|
Vector3d frictionTorqueLab; |
359 |
|
|
RealType fdot; |
360 |
|
|
RealType tdot; |
361 |
|
|
|
362 |
|
|
//iteration starts here: |
363 |
|
|
|
364 |
|
|
for (int k = 0; k < maxIterNum_; k++) { |
365 |
|
|
|
366 |
|
|
if (integrableObject->isLinear()) { |
367 |
|
|
int linearAxis = integrableObject->linearAxis(); |
368 |
|
|
int l = (linearAxis +1 )%3; |
369 |
|
|
int m = (linearAxis +2 )%3; |
370 |
|
|
omegaBody[l] = angMomStep[l] /I(l, l); |
371 |
|
|
omegaBody[m] = angMomStep[m] /I(m, m); |
372 |
|
|
|
373 |
|
|
} else { |
374 |
|
|
omegaBody[0] = angMomStep[0] /I(0, 0); |
375 |
|
|
omegaBody[1] = angMomStep[1] /I(1, 1); |
376 |
|
|
omegaBody[2] = angMomStep[2] /I(2, 2); |
377 |
|
|
} |
378 |
|
|
|
379 |
|
|
omegaLab = Atrans * omegaBody; |
380 |
|
|
|
381 |
|
|
// apply friction force and torque at center of resistance |
382 |
|
|
|
383 |
|
|
vcdLab = velStep + cross(omegaLab, rcrLab); |
384 |
|
|
vcdBody = A * vcdLab; |
385 |
|
|
frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody); |
386 |
|
|
oldFFL = frictionForceLab; |
387 |
|
|
frictionForceLab = Atrans * frictionForceBody; |
388 |
|
|
oldFTB = frictionTorqueBody; |
389 |
|
|
frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody); |
390 |
|
|
frictionTorqueLab = Atrans * frictionTorqueBody; |
391 |
|
|
|
392 |
|
|
// re-estimate velocities at full-step using friction forces: |
393 |
|
|
|
394 |
gezelter |
1390 |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab); |
395 |
|
|
angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody); |
396 |
gezelter |
1237 |
|
397 |
|
|
// check for convergence (if the vectors have converged, fdot and tdot will both be 1.0): |
398 |
|
|
|
399 |
|
|
fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare(); |
400 |
|
|
tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare(); |
401 |
|
|
|
402 |
|
|
if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_) |
403 |
|
|
break; // iteration ends here |
404 |
|
|
} |
405 |
|
|
|
406 |
|
|
integrableObject->addFrc(frictionForceLab); |
407 |
|
|
integrableObject->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab)); |
408 |
|
|
|
409 |
|
|
|
410 |
tim |
895 |
} else { |
411 |
gezelter |
945 |
//spherical atom |
412 |
gezelter |
1237 |
|
413 |
gezelter |
945 |
Vector3d randomForce; |
414 |
|
|
Vector3d randomTorque; |
415 |
|
|
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
416 |
gezelter |
1237 |
integrableObject->addFrc(randomForce); |
417 |
|
|
|
418 |
|
|
// What remains contains velocity explicitly, but the velocity required |
419 |
|
|
// is at the full step: v(t + h), while we have initially the velocity |
420 |
|
|
// at the half step: v(t + h/2). We need to iterate to converge the |
421 |
|
|
// friction force vector. |
422 |
|
|
|
423 |
|
|
// this is the velocity at the half-step: |
424 |
gezelter |
945 |
|
425 |
gezelter |
1237 |
Vector3d vel =integrableObject->getVel(); |
426 |
|
|
|
427 |
|
|
//estimate velocity at full-step using everything but friction forces: |
428 |
|
|
|
429 |
|
|
frc = integrableObject->getFrc(); |
430 |
gezelter |
1390 |
Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc; |
431 |
gezelter |
1237 |
|
432 |
|
|
Vector3d frictionForce(0.0); |
433 |
|
|
Vector3d oldFF; // used to test for convergence |
434 |
|
|
RealType fdot; |
435 |
|
|
|
436 |
|
|
//iteration starts here: |
437 |
|
|
|
438 |
|
|
for (int k = 0; k < maxIterNum_; k++) { |
439 |
|
|
|
440 |
|
|
oldFF = frictionForce; |
441 |
|
|
frictionForce = -hydroProps_[index]->getXitt() * velStep; |
442 |
|
|
|
443 |
|
|
// re-estimate velocities at full-step using friction forces: |
444 |
|
|
|
445 |
gezelter |
1390 |
velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce); |
446 |
gezelter |
1237 |
|
447 |
|
|
// check for convergence (if the vector has converged, fdot will be 1.0): |
448 |
|
|
|
449 |
|
|
fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare(); |
450 |
|
|
|
451 |
|
|
if (fabs(1.0 - fdot) <= forceTolerance_) |
452 |
|
|
break; // iteration ends here |
453 |
|
|
} |
454 |
|
|
|
455 |
|
|
integrableObject->addFrc(frictionForce); |
456 |
|
|
|
457 |
tim |
895 |
} |
458 |
gezelter |
956 |
} |
459 |
gezelter |
945 |
|
460 |
gezelter |
956 |
++index; |
461 |
tim |
895 |
|
462 |
|
|
} |
463 |
gezelter |
956 |
} |
464 |
chuckv |
1120 |
|
465 |
gezelter |
945 |
info_->setFdf(fdf); |
466 |
gezelter |
983 |
veloMunge->removeComDrift(); |
467 |
|
|
// Remove angular drift if we are not using periodic boundary conditions. |
468 |
|
|
if(!simParams->getUsePeriodicBoundaryConditions()) |
469 |
|
|
veloMunge->removeAngularDrift(); |
470 |
|
|
|
471 |
gezelter |
1126 |
ForceManager::postCalculation(needStress); |
472 |
tim |
895 |
} |
473 |
|
|
|
474 |
tim |
963 |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) { |
475 |
tim |
904 |
|
476 |
tim |
906 |
|
477 |
tim |
963 |
Vector<RealType, 6> Z; |
478 |
|
|
Vector<RealType, 6> generalForce; |
479 |
tim |
904 |
|
480 |
tim |
895 |
Z[0] = randNumGen_.randNorm(0, variance); |
481 |
|
|
Z[1] = randNumGen_.randNorm(0, variance); |
482 |
|
|
Z[2] = randNumGen_.randNorm(0, variance); |
483 |
|
|
Z[3] = randNumGen_.randNorm(0, variance); |
484 |
|
|
Z[4] = randNumGen_.randNorm(0, variance); |
485 |
|
|
Z[5] = randNumGen_.randNorm(0, variance); |
486 |
tim |
904 |
|
487 |
gezelter |
981 |
generalForce = hydroProps_[index]->getS()*Z; |
488 |
tim |
904 |
|
489 |
tim |
895 |
force[0] = generalForce[0]; |
490 |
|
|
force[1] = generalForce[1]; |
491 |
|
|
force[2] = generalForce[2]; |
492 |
|
|
torque[0] = generalForce[3]; |
493 |
|
|
torque[1] = generalForce[4]; |
494 |
|
|
torque[2] = generalForce[5]; |
495 |
|
|
|
496 |
xsun |
1185 |
} |
497 |
tim |
895 |
|
498 |
|
|
} |