1 |
gezelter |
2 |
#include <iostream> |
2 |
|
|
#include <stdlib.h> |
3 |
|
|
#include <math.h> |
4 |
|
|
#ifdef IS_MPI |
5 |
tim |
3 |
#include "brains/mpiSimulation.hpp" |
6 |
gezelter |
2 |
#include <unistd.h> |
7 |
|
|
#endif //is_mpi |
8 |
|
|
|
9 |
|
|
#ifdef PROFILE |
10 |
tim |
3 |
#include "profiling/mdProfile.hpp" |
11 |
gezelter |
2 |
#endif // profile |
12 |
|
|
|
13 |
tim |
3 |
#include "integrators/Integrator.hpp" |
14 |
|
|
#include "utils/simError.h" |
15 |
gezelter |
2 |
|
16 |
|
|
|
17 |
|
|
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
18 |
|
|
ForceFields* the_ff){ |
19 |
|
|
info = theInfo; |
20 |
|
|
myFF = the_ff; |
21 |
|
|
isFirst = 1; |
22 |
|
|
|
23 |
|
|
molecules = info->molecules; |
24 |
|
|
nMols = info->n_mol; |
25 |
|
|
|
26 |
|
|
// give a little love back to the SimInfo object |
27 |
|
|
|
28 |
|
|
if (info->the_integrator != NULL){ |
29 |
|
|
delete info->the_integrator; |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
nAtoms = info->n_atoms; |
33 |
|
|
integrableObjects = info->integrableObjects; |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
// check for constraints |
37 |
|
|
|
38 |
|
|
constrainedA = NULL; |
39 |
|
|
constrainedB = NULL; |
40 |
|
|
constrainedDsqr = NULL; |
41 |
|
|
moving = NULL; |
42 |
|
|
moved = NULL; |
43 |
|
|
oldPos = NULL; |
44 |
|
|
|
45 |
|
|
nConstrained = 0; |
46 |
|
|
|
47 |
|
|
checkConstraints(); |
48 |
|
|
|
49 |
|
|
} |
50 |
|
|
|
51 |
|
|
template<typename T> Integrator<T>::~Integrator(){ |
52 |
|
|
|
53 |
|
|
if (nConstrained){ |
54 |
|
|
delete[] constrainedA; |
55 |
|
|
delete[] constrainedB; |
56 |
|
|
delete[] constrainedDsqr; |
57 |
|
|
delete[] moving; |
58 |
|
|
delete[] moved; |
59 |
|
|
delete[] oldPos; |
60 |
|
|
} |
61 |
|
|
|
62 |
|
|
} |
63 |
|
|
|
64 |
|
|
|
65 |
|
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
66 |
|
|
isConstrained = 0; |
67 |
|
|
|
68 |
|
|
Constraint* temp_con; |
69 |
|
|
Constraint* dummy_plug; |
70 |
|
|
temp_con = new Constraint[info->n_SRI]; |
71 |
|
|
nConstrained = 0; |
72 |
|
|
int constrained = 0; |
73 |
|
|
|
74 |
|
|
SRI** theArray; |
75 |
|
|
for (int i = 0; i < nMols; i++){ |
76 |
|
|
|
77 |
|
|
theArray = (SRI * *) molecules[i].getMyBonds(); |
78 |
|
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
79 |
|
|
constrained = theArray[j]->is_constrained(); |
80 |
|
|
|
81 |
|
|
if (constrained){ |
82 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
83 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
84 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
85 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
86 |
|
|
|
87 |
|
|
nConstrained++; |
88 |
|
|
constrained = 0; |
89 |
|
|
} |
90 |
|
|
} |
91 |
|
|
|
92 |
|
|
theArray = (SRI * *) molecules[i].getMyBends(); |
93 |
|
|
for (int j = 0; j < molecules[i].getNBends(); j++){ |
94 |
|
|
constrained = theArray[j]->is_constrained(); |
95 |
|
|
|
96 |
|
|
if (constrained){ |
97 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
98 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
99 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
100 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
101 |
|
|
|
102 |
|
|
nConstrained++; |
103 |
|
|
constrained = 0; |
104 |
|
|
} |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
theArray = (SRI * *) molecules[i].getMyTorsions(); |
108 |
|
|
for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
109 |
|
|
constrained = theArray[j]->is_constrained(); |
110 |
|
|
|
111 |
|
|
if (constrained){ |
112 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
113 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
114 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
115 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
116 |
|
|
|
117 |
|
|
nConstrained++; |
118 |
|
|
constrained = 0; |
119 |
|
|
} |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
|
124 |
|
|
if (nConstrained > 0){ |
125 |
|
|
isConstrained = 1; |
126 |
|
|
|
127 |
|
|
if (constrainedA != NULL) |
128 |
|
|
delete[] constrainedA; |
129 |
|
|
if (constrainedB != NULL) |
130 |
|
|
delete[] constrainedB; |
131 |
|
|
if (constrainedDsqr != NULL) |
132 |
|
|
delete[] constrainedDsqr; |
133 |
|
|
|
134 |
|
|
constrainedA = new int[nConstrained]; |
135 |
|
|
constrainedB = new int[nConstrained]; |
136 |
|
|
constrainedDsqr = new double[nConstrained]; |
137 |
|
|
|
138 |
|
|
for (int i = 0; i < nConstrained; i++){ |
139 |
|
|
constrainedA[i] = temp_con[i].get_a(); |
140 |
|
|
constrainedB[i] = temp_con[i].get_b(); |
141 |
|
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
|
145 |
|
|
// save oldAtoms to check for lode balancing later on. |
146 |
|
|
|
147 |
|
|
oldAtoms = nAtoms; |
148 |
|
|
|
149 |
|
|
moving = new int[nAtoms]; |
150 |
|
|
moved = new int[nAtoms]; |
151 |
|
|
|
152 |
|
|
oldPos = new double[nAtoms * 3]; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
delete[] temp_con; |
156 |
|
|
} |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
template<typename T> void Integrator<T>::integrate(void){ |
160 |
|
|
|
161 |
|
|
double runTime = info->run_time; |
162 |
|
|
double sampleTime = info->sampleTime; |
163 |
|
|
double statusTime = info->statusTime; |
164 |
|
|
double thermalTime = info->thermalTime; |
165 |
|
|
double resetTime = info->resetTime; |
166 |
|
|
|
167 |
|
|
double difference; |
168 |
|
|
double currSample; |
169 |
|
|
double currThermal; |
170 |
|
|
double currStatus; |
171 |
|
|
double currReset; |
172 |
|
|
|
173 |
|
|
int calcPot, calcStress; |
174 |
chrisfen |
221 |
int i; |
175 |
|
|
int localIndex; |
176 |
gezelter |
2 |
|
177 |
chrisfen |
221 |
#ifdef IS_MPI |
178 |
|
|
int which_node; |
179 |
|
|
#endif // is_mpi |
180 |
|
|
|
181 |
|
|
vector<StuntDouble*> particles; |
182 |
|
|
string inAngle; |
183 |
|
|
|
184 |
gezelter |
2 |
tStats = new Thermo(info); |
185 |
|
|
statOut = new StatWriter(info); |
186 |
|
|
dumpOut = new DumpWriter(info); |
187 |
|
|
|
188 |
chrisfen |
221 |
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
189 |
|
|
restOut = new RestraintWriter(info); |
190 |
|
|
initRestraints = new RestraintReader(info); |
191 |
|
|
} |
192 |
|
|
|
193 |
gezelter |
2 |
atoms = info->atoms; |
194 |
|
|
|
195 |
|
|
dt = info->dt; |
196 |
|
|
dt2 = 0.5 * dt; |
197 |
|
|
|
198 |
|
|
readyCheck(); |
199 |
|
|
|
200 |
|
|
// remove center of mass drift velocity (in case we passed in a configuration |
201 |
|
|
// that was drifting |
202 |
|
|
tStats->removeCOMdrift(); |
203 |
|
|
|
204 |
|
|
// initialize the retraints if necessary |
205 |
|
|
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
206 |
chrisfen |
221 |
initRestraints->zeroZangle(); |
207 |
|
|
inAngle = info->zAngleName + "_in"; |
208 |
|
|
initRestraints->readZangle(inAngle.c_str()); |
209 |
|
|
initRestraints->readIdealCrystal(); |
210 |
gezelter |
2 |
} |
211 |
|
|
|
212 |
|
|
// initialize the forces before the first step |
213 |
|
|
calcForce(1, 1); |
214 |
|
|
|
215 |
|
|
//execute constraint algorithm to make sure at the very beginning the system is constrained |
216 |
|
|
if(nConstrained){ |
217 |
|
|
preMove(); |
218 |
|
|
constrainA(); |
219 |
|
|
calcForce(1, 1); |
220 |
|
|
constrainB(); |
221 |
|
|
} |
222 |
|
|
|
223 |
|
|
if (info->setTemp){ |
224 |
|
|
thermalize(); |
225 |
|
|
} |
226 |
|
|
|
227 |
|
|
calcPot = 0; |
228 |
|
|
calcStress = 0; |
229 |
|
|
currSample = sampleTime + info->getTime(); |
230 |
|
|
currThermal = thermalTime+ info->getTime(); |
231 |
|
|
currStatus = statusTime + info->getTime(); |
232 |
|
|
currReset = resetTime + info->getTime(); |
233 |
|
|
|
234 |
|
|
dumpOut->writeDump(info->getTime()); |
235 |
|
|
statOut->writeStat(info->getTime()); |
236 |
chrisfen |
221 |
restOut->writeZangle(info->getTime()); |
237 |
gezelter |
2 |
|
238 |
|
|
#ifdef IS_MPI |
239 |
|
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
240 |
|
|
MPIcheckPoint(); |
241 |
|
|
#endif // is_mpi |
242 |
|
|
|
243 |
|
|
while (info->getTime() < runTime && !stopIntegrator()){ |
244 |
|
|
difference = info->getTime() + dt - currStatus; |
245 |
|
|
if (difference > 0 || fabs(difference) < 1e-4 ){ |
246 |
|
|
calcPot = 1; |
247 |
|
|
calcStress = 1; |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
#ifdef PROFILE |
251 |
|
|
startProfile( pro1 ); |
252 |
|
|
#endif |
253 |
|
|
|
254 |
|
|
integrateStep(calcPot, calcStress); |
255 |
|
|
|
256 |
|
|
#ifdef PROFILE |
257 |
|
|
endProfile( pro1 ); |
258 |
|
|
|
259 |
|
|
startProfile( pro2 ); |
260 |
|
|
#endif // profile |
261 |
|
|
|
262 |
|
|
info->incrTime(dt); |
263 |
|
|
|
264 |
|
|
if (info->setTemp){ |
265 |
|
|
if (info->getTime() >= currThermal){ |
266 |
|
|
thermalize(); |
267 |
|
|
currThermal += thermalTime; |
268 |
|
|
} |
269 |
|
|
} |
270 |
|
|
|
271 |
|
|
if (info->getTime() >= currSample){ |
272 |
|
|
dumpOut->writeDump(info->getTime()); |
273 |
chrisfen |
221 |
// write a zAng file to coincide with each dump or eor file |
274 |
|
|
if (info->useSolidThermInt && !info->useLiquidThermInt) |
275 |
|
|
restOut->writeZangle(info->getTime()); |
276 |
gezelter |
2 |
currSample += sampleTime; |
277 |
|
|
} |
278 |
|
|
|
279 |
|
|
if (info->getTime() >= currStatus){ |
280 |
|
|
statOut->writeStat(info->getTime()); |
281 |
|
|
calcPot = 0; |
282 |
|
|
calcStress = 0; |
283 |
|
|
currStatus += statusTime; |
284 |
|
|
} |
285 |
|
|
|
286 |
|
|
if (info->resetIntegrator){ |
287 |
|
|
if (info->getTime() >= currReset){ |
288 |
|
|
this->resetIntegrator(); |
289 |
|
|
currReset += resetTime; |
290 |
|
|
} |
291 |
|
|
} |
292 |
|
|
|
293 |
|
|
#ifdef PROFILE |
294 |
|
|
endProfile( pro2 ); |
295 |
|
|
#endif //profile |
296 |
|
|
|
297 |
|
|
#ifdef IS_MPI |
298 |
|
|
strcpy(checkPointMsg, "successfully took a time step."); |
299 |
|
|
MPIcheckPoint(); |
300 |
|
|
#endif // is_mpi |
301 |
|
|
} |
302 |
|
|
|
303 |
|
|
dumpOut->writeFinal(info->getTime()); |
304 |
|
|
|
305 |
chrisfen |
221 |
// write the file containing the omega values of the final configuration |
306 |
|
|
if (info->useSolidThermInt && !info->useLiquidThermInt){ |
307 |
|
|
restOut->writeZangle(info->getTime()); |
308 |
|
|
restOut->writeZangle(info->getTime(), inAngle.c_str()); |
309 |
|
|
} |
310 |
gezelter |
2 |
|
311 |
|
|
delete dumpOut; |
312 |
|
|
delete statOut; |
313 |
|
|
} |
314 |
|
|
|
315 |
|
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
316 |
|
|
int calcStress){ |
317 |
|
|
// Position full step, and velocity half step |
318 |
|
|
|
319 |
|
|
#ifdef PROFILE |
320 |
|
|
startProfile(pro3); |
321 |
|
|
#endif //profile |
322 |
|
|
|
323 |
|
|
//save old state (position, velocity etc) |
324 |
|
|
preMove(); |
325 |
|
|
#ifdef PROFILE |
326 |
|
|
endProfile(pro3); |
327 |
|
|
|
328 |
|
|
startProfile(pro4); |
329 |
|
|
#endif // profile |
330 |
|
|
|
331 |
|
|
moveA(); |
332 |
|
|
|
333 |
|
|
#ifdef PROFILE |
334 |
|
|
endProfile(pro4); |
335 |
|
|
|
336 |
|
|
startProfile(pro5); |
337 |
|
|
#endif//profile |
338 |
|
|
|
339 |
|
|
|
340 |
|
|
#ifdef IS_MPI |
341 |
|
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
342 |
|
|
MPIcheckPoint(); |
343 |
|
|
#endif // is_mpi |
344 |
|
|
|
345 |
|
|
// calc forces |
346 |
|
|
calcForce(calcPot, calcStress); |
347 |
|
|
|
348 |
|
|
#ifdef IS_MPI |
349 |
|
|
strcpy(checkPointMsg, "Succesful doForces\n"); |
350 |
|
|
MPIcheckPoint(); |
351 |
|
|
#endif // is_mpi |
352 |
|
|
|
353 |
|
|
#ifdef PROFILE |
354 |
|
|
endProfile( pro5 ); |
355 |
|
|
|
356 |
|
|
startProfile( pro6 ); |
357 |
|
|
#endif //profile |
358 |
|
|
|
359 |
|
|
// finish the velocity half step |
360 |
|
|
|
361 |
|
|
moveB(); |
362 |
|
|
|
363 |
|
|
#ifdef PROFILE |
364 |
|
|
endProfile(pro6); |
365 |
|
|
#endif // profile |
366 |
|
|
|
367 |
|
|
#ifdef IS_MPI |
368 |
|
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
369 |
|
|
MPIcheckPoint(); |
370 |
|
|
#endif // is_mpi |
371 |
|
|
} |
372 |
|
|
|
373 |
|
|
|
374 |
|
|
template<typename T> void Integrator<T>::moveA(void){ |
375 |
|
|
size_t i, j; |
376 |
|
|
DirectionalAtom* dAtom; |
377 |
|
|
double Tb[3], ji[3]; |
378 |
|
|
double vel[3], pos[3], frc[3]; |
379 |
|
|
double mass; |
380 |
|
|
double omega; |
381 |
|
|
|
382 |
|
|
for (i = 0; i < integrableObjects.size() ; i++){ |
383 |
|
|
integrableObjects[i]->getVel(vel); |
384 |
|
|
integrableObjects[i]->getPos(pos); |
385 |
|
|
integrableObjects[i]->getFrc(frc); |
386 |
chrisfen |
214 |
// std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n"; |
387 |
gezelter |
2 |
|
388 |
|
|
mass = integrableObjects[i]->getMass(); |
389 |
|
|
|
390 |
|
|
for (j = 0; j < 3; j++){ |
391 |
|
|
// velocity half step |
392 |
|
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
393 |
|
|
// position whole step |
394 |
|
|
pos[j] += dt * vel[j]; |
395 |
|
|
} |
396 |
|
|
|
397 |
|
|
integrableObjects[i]->setVel(vel); |
398 |
|
|
integrableObjects[i]->setPos(pos); |
399 |
|
|
|
400 |
gezelter |
204 |
|
401 |
gezelter |
2 |
if (integrableObjects[i]->isDirectional()){ |
402 |
|
|
|
403 |
|
|
// get and convert the torque to body frame |
404 |
|
|
|
405 |
|
|
integrableObjects[i]->getTrq(Tb); |
406 |
gezelter |
204 |
|
407 |
chrisfen |
214 |
// std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n"; |
408 |
gezelter |
2 |
integrableObjects[i]->lab2Body(Tb); |
409 |
|
|
|
410 |
|
|
// get the angular momentum, and propagate a half step |
411 |
|
|
|
412 |
|
|
integrableObjects[i]->getJ(ji); |
413 |
|
|
|
414 |
|
|
for (j = 0; j < 3; j++) |
415 |
|
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
416 |
|
|
|
417 |
|
|
this->rotationPropagation( integrableObjects[i], ji ); |
418 |
|
|
|
419 |
|
|
integrableObjects[i]->setJ(ji); |
420 |
|
|
} |
421 |
|
|
} |
422 |
|
|
|
423 |
|
|
if(nConstrained) |
424 |
|
|
constrainA(); |
425 |
|
|
} |
426 |
|
|
|
427 |
|
|
|
428 |
|
|
template<typename T> void Integrator<T>::moveB(void){ |
429 |
|
|
int i, j; |
430 |
|
|
double Tb[3], ji[3]; |
431 |
|
|
double vel[3], frc[3]; |
432 |
|
|
double mass; |
433 |
|
|
|
434 |
|
|
for (i = 0; i < integrableObjects.size(); i++){ |
435 |
|
|
integrableObjects[i]->getVel(vel); |
436 |
|
|
integrableObjects[i]->getFrc(frc); |
437 |
|
|
|
438 |
|
|
mass = integrableObjects[i]->getMass(); |
439 |
|
|
|
440 |
|
|
// velocity half step |
441 |
|
|
for (j = 0; j < 3; j++) |
442 |
|
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
443 |
|
|
|
444 |
|
|
integrableObjects[i]->setVel(vel); |
445 |
|
|
|
446 |
|
|
if (integrableObjects[i]->isDirectional()){ |
447 |
|
|
|
448 |
|
|
// get and convert the torque to body frame |
449 |
|
|
|
450 |
|
|
integrableObjects[i]->getTrq(Tb); |
451 |
|
|
integrableObjects[i]->lab2Body(Tb); |
452 |
|
|
|
453 |
|
|
// get the angular momentum, and propagate a half step |
454 |
|
|
|
455 |
|
|
integrableObjects[i]->getJ(ji); |
456 |
|
|
|
457 |
|
|
for (j = 0; j < 3; j++) |
458 |
|
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
459 |
|
|
|
460 |
|
|
|
461 |
|
|
integrableObjects[i]->setJ(ji); |
462 |
|
|
} |
463 |
|
|
} |
464 |
|
|
|
465 |
|
|
if(nConstrained) |
466 |
|
|
constrainB(); |
467 |
|
|
} |
468 |
|
|
|
469 |
|
|
|
470 |
|
|
template<typename T> void Integrator<T>::preMove(void){ |
471 |
|
|
int i, j; |
472 |
|
|
double pos[3]; |
473 |
|
|
|
474 |
|
|
if (nConstrained){ |
475 |
|
|
for (i = 0; i < nAtoms; i++){ |
476 |
|
|
atoms[i]->getPos(pos); |
477 |
|
|
|
478 |
|
|
for (j = 0; j < 3; j++){ |
479 |
|
|
oldPos[3 * i + j] = pos[j]; |
480 |
|
|
} |
481 |
|
|
} |
482 |
|
|
} |
483 |
|
|
} |
484 |
|
|
|
485 |
|
|
template<typename T> void Integrator<T>::constrainA(){ |
486 |
|
|
int i, j; |
487 |
|
|
int done; |
488 |
|
|
double posA[3], posB[3]; |
489 |
|
|
double velA[3], velB[3]; |
490 |
|
|
double pab[3]; |
491 |
|
|
double rab[3]; |
492 |
|
|
int a, b, ax, ay, az, bx, by, bz; |
493 |
|
|
double rma, rmb; |
494 |
|
|
double dx, dy, dz; |
495 |
|
|
double rpab; |
496 |
|
|
double rabsq, pabsq, rpabsq; |
497 |
|
|
double diffsq; |
498 |
|
|
double gab; |
499 |
|
|
int iteration; |
500 |
|
|
|
501 |
|
|
for (i = 0; i < nAtoms; i++){ |
502 |
|
|
moving[i] = 0; |
503 |
|
|
moved[i] = 1; |
504 |
|
|
} |
505 |
|
|
|
506 |
|
|
iteration = 0; |
507 |
|
|
done = 0; |
508 |
|
|
while (!done && (iteration < maxIteration)){ |
509 |
|
|
done = 1; |
510 |
|
|
for (i = 0; i < nConstrained; i++){ |
511 |
|
|
a = constrainedA[i]; |
512 |
|
|
b = constrainedB[i]; |
513 |
|
|
|
514 |
|
|
ax = (a * 3) + 0; |
515 |
|
|
ay = (a * 3) + 1; |
516 |
|
|
az = (a * 3) + 2; |
517 |
|
|
|
518 |
|
|
bx = (b * 3) + 0; |
519 |
|
|
by = (b * 3) + 1; |
520 |
|
|
bz = (b * 3) + 2; |
521 |
|
|
|
522 |
|
|
if (moved[a] || moved[b]){ |
523 |
|
|
atoms[a]->getPos(posA); |
524 |
|
|
atoms[b]->getPos(posB); |
525 |
|
|
|
526 |
|
|
for (j = 0; j < 3; j++) |
527 |
|
|
pab[j] = posA[j] - posB[j]; |
528 |
|
|
|
529 |
|
|
//periodic boundary condition |
530 |
|
|
|
531 |
|
|
info->wrapVector(pab); |
532 |
|
|
|
533 |
|
|
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
534 |
|
|
|
535 |
|
|
rabsq = constrainedDsqr[i]; |
536 |
|
|
diffsq = rabsq - pabsq; |
537 |
|
|
|
538 |
|
|
// the original rattle code from alan tidesley |
539 |
|
|
if (fabs(diffsq) > (tol * rabsq * 2)){ |
540 |
|
|
rab[0] = oldPos[ax] - oldPos[bx]; |
541 |
|
|
rab[1] = oldPos[ay] - oldPos[by]; |
542 |
|
|
rab[2] = oldPos[az] - oldPos[bz]; |
543 |
|
|
|
544 |
|
|
info->wrapVector(rab); |
545 |
|
|
|
546 |
|
|
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
547 |
|
|
|
548 |
|
|
rpabsq = rpab * rpab; |
549 |
|
|
|
550 |
|
|
|
551 |
|
|
if (rpabsq < (rabsq * -diffsq)){ |
552 |
|
|
#ifdef IS_MPI |
553 |
|
|
a = atoms[a]->getGlobalIndex(); |
554 |
|
|
b = atoms[b]->getGlobalIndex(); |
555 |
|
|
#endif //is_mpi |
556 |
|
|
sprintf(painCave.errMsg, |
557 |
|
|
"Constraint failure in constrainA at atom %d and %d.\n", a, |
558 |
|
|
b); |
559 |
|
|
painCave.isFatal = 1; |
560 |
|
|
simError(); |
561 |
|
|
} |
562 |
|
|
|
563 |
|
|
rma = 1.0 / atoms[a]->getMass(); |
564 |
|
|
rmb = 1.0 / atoms[b]->getMass(); |
565 |
|
|
|
566 |
|
|
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
567 |
|
|
|
568 |
|
|
dx = rab[0] * gab; |
569 |
|
|
dy = rab[1] * gab; |
570 |
|
|
dz = rab[2] * gab; |
571 |
|
|
|
572 |
|
|
posA[0] += rma * dx; |
573 |
|
|
posA[1] += rma * dy; |
574 |
|
|
posA[2] += rma * dz; |
575 |
|
|
|
576 |
|
|
atoms[a]->setPos(posA); |
577 |
|
|
|
578 |
|
|
posB[0] -= rmb * dx; |
579 |
|
|
posB[1] -= rmb * dy; |
580 |
|
|
posB[2] -= rmb * dz; |
581 |
|
|
|
582 |
|
|
atoms[b]->setPos(posB); |
583 |
|
|
|
584 |
|
|
dx = dx / dt; |
585 |
|
|
dy = dy / dt; |
586 |
|
|
dz = dz / dt; |
587 |
|
|
|
588 |
|
|
atoms[a]->getVel(velA); |
589 |
|
|
|
590 |
|
|
velA[0] += rma * dx; |
591 |
|
|
velA[1] += rma * dy; |
592 |
|
|
velA[2] += rma * dz; |
593 |
|
|
|
594 |
|
|
atoms[a]->setVel(velA); |
595 |
|
|
|
596 |
|
|
atoms[b]->getVel(velB); |
597 |
|
|
|
598 |
|
|
velB[0] -= rmb * dx; |
599 |
|
|
velB[1] -= rmb * dy; |
600 |
|
|
velB[2] -= rmb * dz; |
601 |
|
|
|
602 |
|
|
atoms[b]->setVel(velB); |
603 |
|
|
|
604 |
|
|
moving[a] = 1; |
605 |
|
|
moving[b] = 1; |
606 |
|
|
done = 0; |
607 |
|
|
} |
608 |
|
|
} |
609 |
|
|
} |
610 |
|
|
|
611 |
|
|
for (i = 0; i < nAtoms; i++){ |
612 |
|
|
moved[i] = moving[i]; |
613 |
|
|
moving[i] = 0; |
614 |
|
|
} |
615 |
|
|
|
616 |
|
|
iteration++; |
617 |
|
|
} |
618 |
|
|
|
619 |
|
|
if (!done){ |
620 |
|
|
sprintf(painCave.errMsg, |
621 |
|
|
"Constraint failure in constrainA, too many iterations: %d\n", |
622 |
|
|
iteration); |
623 |
|
|
painCave.isFatal = 1; |
624 |
|
|
simError(); |
625 |
|
|
} |
626 |
|
|
|
627 |
|
|
} |
628 |
|
|
|
629 |
|
|
template<typename T> void Integrator<T>::constrainB(void){ |
630 |
|
|
int i, j; |
631 |
|
|
int done; |
632 |
|
|
double posA[3], posB[3]; |
633 |
|
|
double velA[3], velB[3]; |
634 |
|
|
double vxab, vyab, vzab; |
635 |
|
|
double rab[3]; |
636 |
|
|
int a, b, ax, ay, az, bx, by, bz; |
637 |
|
|
double rma, rmb; |
638 |
|
|
double dx, dy, dz; |
639 |
|
|
double rvab; |
640 |
|
|
double gab; |
641 |
|
|
int iteration; |
642 |
|
|
|
643 |
|
|
for (i = 0; i < nAtoms; i++){ |
644 |
|
|
moving[i] = 0; |
645 |
|
|
moved[i] = 1; |
646 |
|
|
} |
647 |
|
|
|
648 |
|
|
done = 0; |
649 |
|
|
iteration = 0; |
650 |
|
|
while (!done && (iteration < maxIteration)){ |
651 |
|
|
done = 1; |
652 |
|
|
|
653 |
|
|
for (i = 0; i < nConstrained; i++){ |
654 |
|
|
a = constrainedA[i]; |
655 |
|
|
b = constrainedB[i]; |
656 |
|
|
|
657 |
|
|
ax = (a * 3) + 0; |
658 |
|
|
ay = (a * 3) + 1; |
659 |
|
|
az = (a * 3) + 2; |
660 |
|
|
|
661 |
|
|
bx = (b * 3) + 0; |
662 |
|
|
by = (b * 3) + 1; |
663 |
|
|
bz = (b * 3) + 2; |
664 |
|
|
|
665 |
|
|
if (moved[a] || moved[b]){ |
666 |
|
|
atoms[a]->getVel(velA); |
667 |
|
|
atoms[b]->getVel(velB); |
668 |
|
|
|
669 |
|
|
vxab = velA[0] - velB[0]; |
670 |
|
|
vyab = velA[1] - velB[1]; |
671 |
|
|
vzab = velA[2] - velB[2]; |
672 |
|
|
|
673 |
|
|
atoms[a]->getPos(posA); |
674 |
|
|
atoms[b]->getPos(posB); |
675 |
|
|
|
676 |
|
|
for (j = 0; j < 3; j++) |
677 |
|
|
rab[j] = posA[j] - posB[j]; |
678 |
|
|
|
679 |
|
|
info->wrapVector(rab); |
680 |
|
|
|
681 |
|
|
rma = 1.0 / atoms[a]->getMass(); |
682 |
|
|
rmb = 1.0 / atoms[b]->getMass(); |
683 |
|
|
|
684 |
|
|
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
685 |
|
|
|
686 |
|
|
gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
687 |
|
|
|
688 |
|
|
if (fabs(gab) > tol){ |
689 |
|
|
dx = rab[0] * gab; |
690 |
|
|
dy = rab[1] * gab; |
691 |
|
|
dz = rab[2] * gab; |
692 |
|
|
|
693 |
|
|
velA[0] += rma * dx; |
694 |
|
|
velA[1] += rma * dy; |
695 |
|
|
velA[2] += rma * dz; |
696 |
|
|
|
697 |
|
|
atoms[a]->setVel(velA); |
698 |
|
|
|
699 |
|
|
velB[0] -= rmb * dx; |
700 |
|
|
velB[1] -= rmb * dy; |
701 |
|
|
velB[2] -= rmb * dz; |
702 |
|
|
|
703 |
|
|
atoms[b]->setVel(velB); |
704 |
|
|
|
705 |
|
|
moving[a] = 1; |
706 |
|
|
moving[b] = 1; |
707 |
|
|
done = 0; |
708 |
|
|
} |
709 |
|
|
} |
710 |
|
|
} |
711 |
|
|
|
712 |
|
|
for (i = 0; i < nAtoms; i++){ |
713 |
|
|
moved[i] = moving[i]; |
714 |
|
|
moving[i] = 0; |
715 |
|
|
} |
716 |
|
|
|
717 |
|
|
iteration++; |
718 |
|
|
} |
719 |
|
|
|
720 |
|
|
if (!done){ |
721 |
|
|
sprintf(painCave.errMsg, |
722 |
|
|
"Constraint failure in constrainB, too many iterations: %d\n", |
723 |
|
|
iteration); |
724 |
|
|
painCave.isFatal = 1; |
725 |
|
|
simError(); |
726 |
|
|
} |
727 |
|
|
} |
728 |
|
|
|
729 |
|
|
template<typename T> void Integrator<T>::rotationPropagation |
730 |
|
|
( StuntDouble* sd, double ji[3] ){ |
731 |
|
|
|
732 |
|
|
double angle; |
733 |
|
|
double A[3][3], I[3][3]; |
734 |
|
|
int i, j, k; |
735 |
|
|
|
736 |
|
|
// use the angular velocities to propagate the rotation matrix a |
737 |
|
|
// full time step |
738 |
|
|
|
739 |
|
|
sd->getA(A); |
740 |
|
|
sd->getI(I); |
741 |
|
|
|
742 |
|
|
if (sd->isLinear()) { |
743 |
gezelter |
204 |
|
744 |
gezelter |
2 |
i = sd->linearAxis(); |
745 |
|
|
j = (i+1)%3; |
746 |
|
|
k = (i+2)%3; |
747 |
gezelter |
204 |
|
748 |
gezelter |
2 |
angle = dt2 * ji[j] / I[j][j]; |
749 |
|
|
this->rotate( k, i, angle, ji, A ); |
750 |
|
|
|
751 |
|
|
angle = dt * ji[k] / I[k][k]; |
752 |
|
|
this->rotate( i, j, angle, ji, A); |
753 |
|
|
|
754 |
|
|
angle = dt2 * ji[j] / I[j][j]; |
755 |
|
|
this->rotate( k, i, angle, ji, A ); |
756 |
|
|
|
757 |
|
|
} else { |
758 |
|
|
// rotate about the x-axis |
759 |
|
|
angle = dt2 * ji[0] / I[0][0]; |
760 |
|
|
this->rotate( 1, 2, angle, ji, A ); |
761 |
|
|
|
762 |
|
|
// rotate about the y-axis |
763 |
|
|
angle = dt2 * ji[1] / I[1][1]; |
764 |
|
|
this->rotate( 2, 0, angle, ji, A ); |
765 |
|
|
|
766 |
|
|
// rotate about the z-axis |
767 |
|
|
angle = dt * ji[2] / I[2][2]; |
768 |
|
|
sd->addZangle(angle); |
769 |
|
|
this->rotate( 0, 1, angle, ji, A); |
770 |
|
|
|
771 |
|
|
// rotate about the y-axis |
772 |
|
|
angle = dt2 * ji[1] / I[1][1]; |
773 |
|
|
this->rotate( 2, 0, angle, ji, A ); |
774 |
|
|
|
775 |
|
|
// rotate about the x-axis |
776 |
|
|
angle = dt2 * ji[0] / I[0][0]; |
777 |
|
|
this->rotate( 1, 2, angle, ji, A ); |
778 |
|
|
|
779 |
|
|
} |
780 |
|
|
sd->setA( A ); |
781 |
|
|
} |
782 |
|
|
|
783 |
|
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
784 |
|
|
double angle, double ji[3], |
785 |
|
|
double A[3][3]){ |
786 |
|
|
int i, j, k; |
787 |
|
|
double sinAngle; |
788 |
|
|
double cosAngle; |
789 |
|
|
double angleSqr; |
790 |
|
|
double angleSqrOver4; |
791 |
|
|
double top, bottom; |
792 |
|
|
double rot[3][3]; |
793 |
|
|
double tempA[3][3]; |
794 |
|
|
double tempJ[3]; |
795 |
|
|
|
796 |
|
|
// initialize the tempA |
797 |
|
|
|
798 |
|
|
for (i = 0; i < 3; i++){ |
799 |
|
|
for (j = 0; j < 3; j++){ |
800 |
|
|
tempA[j][i] = A[i][j]; |
801 |
|
|
} |
802 |
|
|
} |
803 |
|
|
|
804 |
|
|
// initialize the tempJ |
805 |
|
|
|
806 |
|
|
for (i = 0; i < 3; i++) |
807 |
|
|
tempJ[i] = ji[i]; |
808 |
|
|
|
809 |
|
|
// initalize rot as a unit matrix |
810 |
|
|
|
811 |
|
|
rot[0][0] = 1.0; |
812 |
|
|
rot[0][1] = 0.0; |
813 |
|
|
rot[0][2] = 0.0; |
814 |
|
|
|
815 |
|
|
rot[1][0] = 0.0; |
816 |
|
|
rot[1][1] = 1.0; |
817 |
|
|
rot[1][2] = 0.0; |
818 |
|
|
|
819 |
|
|
rot[2][0] = 0.0; |
820 |
|
|
rot[2][1] = 0.0; |
821 |
|
|
rot[2][2] = 1.0; |
822 |
|
|
|
823 |
|
|
// use a small angle aproximation for sin and cosine |
824 |
|
|
|
825 |
|
|
angleSqr = angle * angle; |
826 |
|
|
angleSqrOver4 = angleSqr / 4.0; |
827 |
|
|
top = 1.0 - angleSqrOver4; |
828 |
|
|
bottom = 1.0 + angleSqrOver4; |
829 |
|
|
|
830 |
|
|
cosAngle = top / bottom; |
831 |
|
|
sinAngle = angle / bottom; |
832 |
|
|
|
833 |
|
|
rot[axes1][axes1] = cosAngle; |
834 |
|
|
rot[axes2][axes2] = cosAngle; |
835 |
|
|
|
836 |
|
|
rot[axes1][axes2] = sinAngle; |
837 |
|
|
rot[axes2][axes1] = -sinAngle; |
838 |
|
|
|
839 |
|
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
840 |
|
|
|
841 |
|
|
for (i = 0; i < 3; i++){ |
842 |
|
|
ji[i] = 0.0; |
843 |
|
|
for (k = 0; k < 3; k++){ |
844 |
|
|
ji[i] += rot[i][k] * tempJ[k]; |
845 |
|
|
} |
846 |
|
|
} |
847 |
|
|
|
848 |
|
|
// rotate the Rotation matrix acording to: |
849 |
|
|
// A[][] = A[][] * transpose(rot[][]) |
850 |
|
|
|
851 |
|
|
|
852 |
|
|
// NOte for as yet unknown reason, we are performing the |
853 |
|
|
// calculation as: |
854 |
|
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
855 |
|
|
|
856 |
|
|
for (i = 0; i < 3; i++){ |
857 |
|
|
for (j = 0; j < 3; j++){ |
858 |
|
|
A[j][i] = 0.0; |
859 |
|
|
for (k = 0; k < 3; k++){ |
860 |
|
|
A[j][i] += tempA[i][k] * rot[j][k]; |
861 |
|
|
} |
862 |
|
|
} |
863 |
|
|
} |
864 |
|
|
} |
865 |
|
|
|
866 |
|
|
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
867 |
|
|
myFF->doForces(calcPot, calcStress); |
868 |
|
|
} |
869 |
|
|
|
870 |
|
|
template<typename T> void Integrator<T>::thermalize(){ |
871 |
|
|
tStats->velocitize(); |
872 |
|
|
} |
873 |
|
|
|
874 |
|
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
875 |
|
|
return tStats->getTotalE(); |
876 |
|
|
} |
877 |
|
|
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
878 |
|
|
//By default, return a null string |
879 |
|
|
//The reason we use string instead of char* is that if we use char*, we will |
880 |
|
|
//return a pointer point to local variable which might cause problem |
881 |
|
|
return string(); |
882 |
|
|
} |