1 |
gezelter |
2 |
#include <iostream> |
2 |
|
|
#include <stdlib.h> |
3 |
|
|
#include <math.h> |
4 |
|
|
#ifdef IS_MPI |
5 |
tim |
3 |
#include "brains/mpiSimulation.hpp" |
6 |
gezelter |
2 |
#include <unistd.h> |
7 |
|
|
#endif //is_mpi |
8 |
|
|
|
9 |
|
|
#ifdef PROFILE |
10 |
tim |
3 |
#include "profiling/mdProfile.hpp" |
11 |
gezelter |
2 |
#endif // profile |
12 |
|
|
|
13 |
tim |
3 |
#include "integrators/Integrator.hpp" |
14 |
|
|
#include "utils/simError.h" |
15 |
gezelter |
2 |
|
16 |
|
|
|
17 |
|
|
template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
18 |
|
|
ForceFields* the_ff){ |
19 |
|
|
info = theInfo; |
20 |
|
|
myFF = the_ff; |
21 |
|
|
isFirst = 1; |
22 |
|
|
|
23 |
|
|
molecules = info->molecules; |
24 |
|
|
nMols = info->n_mol; |
25 |
|
|
|
26 |
|
|
// give a little love back to the SimInfo object |
27 |
|
|
|
28 |
|
|
if (info->the_integrator != NULL){ |
29 |
|
|
delete info->the_integrator; |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
nAtoms = info->n_atoms; |
33 |
|
|
integrableObjects = info->integrableObjects; |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
// check for constraints |
37 |
|
|
|
38 |
|
|
constrainedA = NULL; |
39 |
|
|
constrainedB = NULL; |
40 |
|
|
constrainedDsqr = NULL; |
41 |
|
|
moving = NULL; |
42 |
|
|
moved = NULL; |
43 |
|
|
oldPos = NULL; |
44 |
|
|
|
45 |
|
|
nConstrained = 0; |
46 |
|
|
|
47 |
|
|
checkConstraints(); |
48 |
|
|
|
49 |
|
|
} |
50 |
|
|
|
51 |
|
|
template<typename T> Integrator<T>::~Integrator(){ |
52 |
|
|
|
53 |
|
|
if (nConstrained){ |
54 |
|
|
delete[] constrainedA; |
55 |
|
|
delete[] constrainedB; |
56 |
|
|
delete[] constrainedDsqr; |
57 |
|
|
delete[] moving; |
58 |
|
|
delete[] moved; |
59 |
|
|
delete[] oldPos; |
60 |
|
|
} |
61 |
|
|
|
62 |
|
|
} |
63 |
|
|
|
64 |
|
|
|
65 |
|
|
template<typename T> void Integrator<T>::checkConstraints(void){ |
66 |
|
|
isConstrained = 0; |
67 |
|
|
|
68 |
|
|
Constraint* temp_con; |
69 |
|
|
Constraint* dummy_plug; |
70 |
|
|
temp_con = new Constraint[info->n_SRI]; |
71 |
|
|
nConstrained = 0; |
72 |
|
|
int constrained = 0; |
73 |
|
|
|
74 |
|
|
SRI** theArray; |
75 |
|
|
for (int i = 0; i < nMols; i++){ |
76 |
|
|
|
77 |
|
|
theArray = (SRI * *) molecules[i].getMyBonds(); |
78 |
|
|
for (int j = 0; j < molecules[i].getNBonds(); j++){ |
79 |
|
|
constrained = theArray[j]->is_constrained(); |
80 |
|
|
|
81 |
|
|
if (constrained){ |
82 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
83 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
84 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
85 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
86 |
|
|
|
87 |
|
|
nConstrained++; |
88 |
|
|
constrained = 0; |
89 |
|
|
} |
90 |
|
|
} |
91 |
|
|
|
92 |
|
|
theArray = (SRI * *) molecules[i].getMyBends(); |
93 |
|
|
for (int j = 0; j < molecules[i].getNBends(); j++){ |
94 |
|
|
constrained = theArray[j]->is_constrained(); |
95 |
|
|
|
96 |
|
|
if (constrained){ |
97 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
98 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
99 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
100 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
101 |
|
|
|
102 |
|
|
nConstrained++; |
103 |
|
|
constrained = 0; |
104 |
|
|
} |
105 |
|
|
} |
106 |
|
|
|
107 |
|
|
theArray = (SRI * *) molecules[i].getMyTorsions(); |
108 |
|
|
for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
109 |
|
|
constrained = theArray[j]->is_constrained(); |
110 |
|
|
|
111 |
|
|
if (constrained){ |
112 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
113 |
|
|
temp_con[nConstrained].set_a(dummy_plug->get_a()); |
114 |
|
|
temp_con[nConstrained].set_b(dummy_plug->get_b()); |
115 |
|
|
temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
116 |
|
|
|
117 |
|
|
nConstrained++; |
118 |
|
|
constrained = 0; |
119 |
|
|
} |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
|
124 |
|
|
if (nConstrained > 0){ |
125 |
|
|
isConstrained = 1; |
126 |
|
|
|
127 |
|
|
if (constrainedA != NULL) |
128 |
|
|
delete[] constrainedA; |
129 |
|
|
if (constrainedB != NULL) |
130 |
|
|
delete[] constrainedB; |
131 |
|
|
if (constrainedDsqr != NULL) |
132 |
|
|
delete[] constrainedDsqr; |
133 |
|
|
|
134 |
|
|
constrainedA = new int[nConstrained]; |
135 |
|
|
constrainedB = new int[nConstrained]; |
136 |
|
|
constrainedDsqr = new double[nConstrained]; |
137 |
|
|
|
138 |
|
|
for (int i = 0; i < nConstrained; i++){ |
139 |
|
|
constrainedA[i] = temp_con[i].get_a(); |
140 |
|
|
constrainedB[i] = temp_con[i].get_b(); |
141 |
|
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
142 |
|
|
} |
143 |
|
|
|
144 |
|
|
|
145 |
|
|
// save oldAtoms to check for lode balancing later on. |
146 |
|
|
|
147 |
|
|
oldAtoms = nAtoms; |
148 |
|
|
|
149 |
|
|
moving = new int[nAtoms]; |
150 |
|
|
moved = new int[nAtoms]; |
151 |
|
|
|
152 |
|
|
oldPos = new double[nAtoms * 3]; |
153 |
|
|
} |
154 |
|
|
|
155 |
|
|
delete[] temp_con; |
156 |
|
|
} |
157 |
|
|
|
158 |
|
|
|
159 |
|
|
template<typename T> void Integrator<T>::integrate(void){ |
160 |
|
|
|
161 |
|
|
double runTime = info->run_time; |
162 |
|
|
double sampleTime = info->sampleTime; |
163 |
|
|
double statusTime = info->statusTime; |
164 |
|
|
double thermalTime = info->thermalTime; |
165 |
|
|
double resetTime = info->resetTime; |
166 |
|
|
|
167 |
|
|
double difference; |
168 |
|
|
double currSample; |
169 |
|
|
double currThermal; |
170 |
|
|
double currStatus; |
171 |
|
|
double currReset; |
172 |
|
|
|
173 |
|
|
int calcPot, calcStress; |
174 |
|
|
|
175 |
|
|
tStats = new Thermo(info); |
176 |
|
|
statOut = new StatWriter(info); |
177 |
|
|
dumpOut = new DumpWriter(info); |
178 |
|
|
|
179 |
|
|
atoms = info->atoms; |
180 |
|
|
|
181 |
|
|
dt = info->dt; |
182 |
|
|
dt2 = 0.5 * dt; |
183 |
|
|
|
184 |
|
|
readyCheck(); |
185 |
|
|
|
186 |
|
|
// remove center of mass drift velocity (in case we passed in a configuration |
187 |
|
|
// that was drifting |
188 |
|
|
tStats->removeCOMdrift(); |
189 |
|
|
|
190 |
|
|
// initialize the retraints if necessary |
191 |
|
|
if (info->useSolidThermInt && !info->useLiquidThermInt) { |
192 |
|
|
myFF->initRestraints(); |
193 |
|
|
} |
194 |
|
|
|
195 |
|
|
// initialize the forces before the first step |
196 |
|
|
|
197 |
|
|
calcForce(1, 1); |
198 |
|
|
|
199 |
|
|
//execute constraint algorithm to make sure at the very beginning the system is constrained |
200 |
|
|
if(nConstrained){ |
201 |
|
|
preMove(); |
202 |
|
|
constrainA(); |
203 |
|
|
calcForce(1, 1); |
204 |
|
|
constrainB(); |
205 |
|
|
} |
206 |
|
|
|
207 |
|
|
if (info->setTemp){ |
208 |
|
|
thermalize(); |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
calcPot = 0; |
212 |
|
|
calcStress = 0; |
213 |
|
|
currSample = sampleTime + info->getTime(); |
214 |
|
|
currThermal = thermalTime+ info->getTime(); |
215 |
|
|
currStatus = statusTime + info->getTime(); |
216 |
|
|
currReset = resetTime + info->getTime(); |
217 |
|
|
|
218 |
|
|
dumpOut->writeDump(info->getTime()); |
219 |
|
|
statOut->writeStat(info->getTime()); |
220 |
|
|
|
221 |
|
|
|
222 |
|
|
#ifdef IS_MPI |
223 |
|
|
strcpy(checkPointMsg, "The integrator is ready to go."); |
224 |
|
|
MPIcheckPoint(); |
225 |
|
|
#endif // is_mpi |
226 |
|
|
|
227 |
|
|
while (info->getTime() < runTime && !stopIntegrator()){ |
228 |
|
|
difference = info->getTime() + dt - currStatus; |
229 |
|
|
if (difference > 0 || fabs(difference) < 1e-4 ){ |
230 |
|
|
calcPot = 1; |
231 |
|
|
calcStress = 1; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
#ifdef PROFILE |
235 |
|
|
startProfile( pro1 ); |
236 |
|
|
#endif |
237 |
|
|
|
238 |
|
|
integrateStep(calcPot, calcStress); |
239 |
|
|
|
240 |
|
|
#ifdef PROFILE |
241 |
|
|
endProfile( pro1 ); |
242 |
|
|
|
243 |
|
|
startProfile( pro2 ); |
244 |
|
|
#endif // profile |
245 |
|
|
|
246 |
|
|
info->incrTime(dt); |
247 |
|
|
|
248 |
|
|
if (info->setTemp){ |
249 |
|
|
if (info->getTime() >= currThermal){ |
250 |
|
|
thermalize(); |
251 |
|
|
currThermal += thermalTime; |
252 |
|
|
} |
253 |
|
|
} |
254 |
|
|
|
255 |
|
|
if (info->getTime() >= currSample){ |
256 |
|
|
dumpOut->writeDump(info->getTime()); |
257 |
|
|
currSample += sampleTime; |
258 |
|
|
} |
259 |
|
|
|
260 |
|
|
if (info->getTime() >= currStatus){ |
261 |
|
|
statOut->writeStat(info->getTime()); |
262 |
|
|
calcPot = 0; |
263 |
|
|
calcStress = 0; |
264 |
|
|
currStatus += statusTime; |
265 |
|
|
} |
266 |
|
|
|
267 |
|
|
if (info->resetIntegrator){ |
268 |
|
|
if (info->getTime() >= currReset){ |
269 |
|
|
this->resetIntegrator(); |
270 |
|
|
currReset += resetTime; |
271 |
|
|
} |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
#ifdef PROFILE |
275 |
|
|
endProfile( pro2 ); |
276 |
|
|
#endif //profile |
277 |
|
|
|
278 |
|
|
#ifdef IS_MPI |
279 |
|
|
strcpy(checkPointMsg, "successfully took a time step."); |
280 |
|
|
MPIcheckPoint(); |
281 |
|
|
#endif // is_mpi |
282 |
|
|
} |
283 |
|
|
|
284 |
|
|
dumpOut->writeFinal(info->getTime()); |
285 |
|
|
|
286 |
|
|
// dump out a file containing the omega values for the final configuration |
287 |
|
|
if (info->useSolidThermInt && !info->useLiquidThermInt) |
288 |
|
|
myFF->dumpzAngle(); |
289 |
|
|
|
290 |
|
|
|
291 |
|
|
delete dumpOut; |
292 |
|
|
delete statOut; |
293 |
|
|
} |
294 |
|
|
|
295 |
|
|
template<typename T> void Integrator<T>::integrateStep(int calcPot, |
296 |
|
|
int calcStress){ |
297 |
|
|
// Position full step, and velocity half step |
298 |
|
|
|
299 |
|
|
#ifdef PROFILE |
300 |
|
|
startProfile(pro3); |
301 |
|
|
#endif //profile |
302 |
|
|
|
303 |
|
|
//save old state (position, velocity etc) |
304 |
|
|
preMove(); |
305 |
|
|
#ifdef PROFILE |
306 |
|
|
endProfile(pro3); |
307 |
|
|
|
308 |
|
|
startProfile(pro4); |
309 |
|
|
#endif // profile |
310 |
|
|
|
311 |
|
|
moveA(); |
312 |
|
|
|
313 |
|
|
#ifdef PROFILE |
314 |
|
|
endProfile(pro4); |
315 |
|
|
|
316 |
|
|
startProfile(pro5); |
317 |
|
|
#endif//profile |
318 |
|
|
|
319 |
|
|
|
320 |
|
|
#ifdef IS_MPI |
321 |
|
|
strcpy(checkPointMsg, "Succesful moveA\n"); |
322 |
|
|
MPIcheckPoint(); |
323 |
|
|
#endif // is_mpi |
324 |
|
|
|
325 |
|
|
// calc forces |
326 |
|
|
calcForce(calcPot, calcStress); |
327 |
|
|
|
328 |
|
|
#ifdef IS_MPI |
329 |
|
|
strcpy(checkPointMsg, "Succesful doForces\n"); |
330 |
|
|
MPIcheckPoint(); |
331 |
|
|
#endif // is_mpi |
332 |
|
|
|
333 |
|
|
#ifdef PROFILE |
334 |
|
|
endProfile( pro5 ); |
335 |
|
|
|
336 |
|
|
startProfile( pro6 ); |
337 |
|
|
#endif //profile |
338 |
|
|
|
339 |
|
|
// finish the velocity half step |
340 |
|
|
|
341 |
|
|
moveB(); |
342 |
|
|
|
343 |
|
|
#ifdef PROFILE |
344 |
|
|
endProfile(pro6); |
345 |
|
|
#endif // profile |
346 |
|
|
|
347 |
|
|
#ifdef IS_MPI |
348 |
|
|
strcpy(checkPointMsg, "Succesful moveB\n"); |
349 |
|
|
MPIcheckPoint(); |
350 |
|
|
#endif // is_mpi |
351 |
|
|
} |
352 |
|
|
|
353 |
|
|
|
354 |
|
|
template<typename T> void Integrator<T>::moveA(void){ |
355 |
|
|
size_t i, j; |
356 |
|
|
DirectionalAtom* dAtom; |
357 |
|
|
double Tb[3], ji[3]; |
358 |
|
|
double vel[3], pos[3], frc[3]; |
359 |
|
|
double mass; |
360 |
|
|
double omega; |
361 |
|
|
|
362 |
|
|
for (i = 0; i < integrableObjects.size() ; i++){ |
363 |
|
|
integrableObjects[i]->getVel(vel); |
364 |
|
|
integrableObjects[i]->getPos(pos); |
365 |
|
|
integrableObjects[i]->getFrc(frc); |
366 |
chrisfen |
214 |
// std::cerr << "f = " << frc[0] << "\t" << frc[1] << "\t" << frc[2] << "\n"; |
367 |
gezelter |
2 |
|
368 |
|
|
mass = integrableObjects[i]->getMass(); |
369 |
|
|
|
370 |
|
|
for (j = 0; j < 3; j++){ |
371 |
|
|
// velocity half step |
372 |
|
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
373 |
|
|
// position whole step |
374 |
|
|
pos[j] += dt * vel[j]; |
375 |
|
|
} |
376 |
|
|
|
377 |
|
|
integrableObjects[i]->setVel(vel); |
378 |
|
|
integrableObjects[i]->setPos(pos); |
379 |
|
|
|
380 |
gezelter |
204 |
|
381 |
gezelter |
2 |
if (integrableObjects[i]->isDirectional()){ |
382 |
|
|
|
383 |
|
|
// get and convert the torque to body frame |
384 |
|
|
|
385 |
|
|
integrableObjects[i]->getTrq(Tb); |
386 |
gezelter |
204 |
|
387 |
chrisfen |
214 |
// std::cerr << "t = " << Tb[0] << "\t" << Tb[1] << "\t" << Tb[2] << "\n"; |
388 |
gezelter |
2 |
integrableObjects[i]->lab2Body(Tb); |
389 |
|
|
|
390 |
|
|
// get the angular momentum, and propagate a half step |
391 |
|
|
|
392 |
|
|
integrableObjects[i]->getJ(ji); |
393 |
|
|
|
394 |
|
|
for (j = 0; j < 3; j++) |
395 |
|
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
396 |
|
|
|
397 |
|
|
this->rotationPropagation( integrableObjects[i], ji ); |
398 |
|
|
|
399 |
|
|
integrableObjects[i]->setJ(ji); |
400 |
|
|
} |
401 |
|
|
} |
402 |
|
|
|
403 |
|
|
if(nConstrained) |
404 |
|
|
constrainA(); |
405 |
|
|
} |
406 |
|
|
|
407 |
|
|
|
408 |
|
|
template<typename T> void Integrator<T>::moveB(void){ |
409 |
|
|
int i, j; |
410 |
|
|
double Tb[3], ji[3]; |
411 |
|
|
double vel[3], frc[3]; |
412 |
|
|
double mass; |
413 |
|
|
|
414 |
|
|
for (i = 0; i < integrableObjects.size(); i++){ |
415 |
|
|
integrableObjects[i]->getVel(vel); |
416 |
|
|
integrableObjects[i]->getFrc(frc); |
417 |
|
|
|
418 |
|
|
mass = integrableObjects[i]->getMass(); |
419 |
|
|
|
420 |
|
|
// velocity half step |
421 |
|
|
for (j = 0; j < 3; j++) |
422 |
|
|
vel[j] += (dt2 * frc[j] / mass) * eConvert; |
423 |
|
|
|
424 |
|
|
integrableObjects[i]->setVel(vel); |
425 |
|
|
|
426 |
|
|
if (integrableObjects[i]->isDirectional()){ |
427 |
|
|
|
428 |
|
|
// get and convert the torque to body frame |
429 |
|
|
|
430 |
|
|
integrableObjects[i]->getTrq(Tb); |
431 |
|
|
integrableObjects[i]->lab2Body(Tb); |
432 |
|
|
|
433 |
|
|
// get the angular momentum, and propagate a half step |
434 |
|
|
|
435 |
|
|
integrableObjects[i]->getJ(ji); |
436 |
|
|
|
437 |
|
|
for (j = 0; j < 3; j++) |
438 |
|
|
ji[j] += (dt2 * Tb[j]) * eConvert; |
439 |
|
|
|
440 |
|
|
|
441 |
|
|
integrableObjects[i]->setJ(ji); |
442 |
|
|
} |
443 |
|
|
} |
444 |
|
|
|
445 |
|
|
if(nConstrained) |
446 |
|
|
constrainB(); |
447 |
|
|
} |
448 |
|
|
|
449 |
|
|
|
450 |
|
|
template<typename T> void Integrator<T>::preMove(void){ |
451 |
|
|
int i, j; |
452 |
|
|
double pos[3]; |
453 |
|
|
|
454 |
|
|
if (nConstrained){ |
455 |
|
|
for (i = 0; i < nAtoms; i++){ |
456 |
|
|
atoms[i]->getPos(pos); |
457 |
|
|
|
458 |
|
|
for (j = 0; j < 3; j++){ |
459 |
|
|
oldPos[3 * i + j] = pos[j]; |
460 |
|
|
} |
461 |
|
|
} |
462 |
|
|
} |
463 |
|
|
} |
464 |
|
|
|
465 |
|
|
template<typename T> void Integrator<T>::constrainA(){ |
466 |
|
|
int i, j; |
467 |
|
|
int done; |
468 |
|
|
double posA[3], posB[3]; |
469 |
|
|
double velA[3], velB[3]; |
470 |
|
|
double pab[3]; |
471 |
|
|
double rab[3]; |
472 |
|
|
int a, b, ax, ay, az, bx, by, bz; |
473 |
|
|
double rma, rmb; |
474 |
|
|
double dx, dy, dz; |
475 |
|
|
double rpab; |
476 |
|
|
double rabsq, pabsq, rpabsq; |
477 |
|
|
double diffsq; |
478 |
|
|
double gab; |
479 |
|
|
int iteration; |
480 |
|
|
|
481 |
|
|
for (i = 0; i < nAtoms; i++){ |
482 |
|
|
moving[i] = 0; |
483 |
|
|
moved[i] = 1; |
484 |
|
|
} |
485 |
|
|
|
486 |
|
|
iteration = 0; |
487 |
|
|
done = 0; |
488 |
|
|
while (!done && (iteration < maxIteration)){ |
489 |
|
|
done = 1; |
490 |
|
|
for (i = 0; i < nConstrained; i++){ |
491 |
|
|
a = constrainedA[i]; |
492 |
|
|
b = constrainedB[i]; |
493 |
|
|
|
494 |
|
|
ax = (a * 3) + 0; |
495 |
|
|
ay = (a * 3) + 1; |
496 |
|
|
az = (a * 3) + 2; |
497 |
|
|
|
498 |
|
|
bx = (b * 3) + 0; |
499 |
|
|
by = (b * 3) + 1; |
500 |
|
|
bz = (b * 3) + 2; |
501 |
|
|
|
502 |
|
|
if (moved[a] || moved[b]){ |
503 |
|
|
atoms[a]->getPos(posA); |
504 |
|
|
atoms[b]->getPos(posB); |
505 |
|
|
|
506 |
|
|
for (j = 0; j < 3; j++) |
507 |
|
|
pab[j] = posA[j] - posB[j]; |
508 |
|
|
|
509 |
|
|
//periodic boundary condition |
510 |
|
|
|
511 |
|
|
info->wrapVector(pab); |
512 |
|
|
|
513 |
|
|
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
514 |
|
|
|
515 |
|
|
rabsq = constrainedDsqr[i]; |
516 |
|
|
diffsq = rabsq - pabsq; |
517 |
|
|
|
518 |
|
|
// the original rattle code from alan tidesley |
519 |
|
|
if (fabs(diffsq) > (tol * rabsq * 2)){ |
520 |
|
|
rab[0] = oldPos[ax] - oldPos[bx]; |
521 |
|
|
rab[1] = oldPos[ay] - oldPos[by]; |
522 |
|
|
rab[2] = oldPos[az] - oldPos[bz]; |
523 |
|
|
|
524 |
|
|
info->wrapVector(rab); |
525 |
|
|
|
526 |
|
|
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
527 |
|
|
|
528 |
|
|
rpabsq = rpab * rpab; |
529 |
|
|
|
530 |
|
|
|
531 |
|
|
if (rpabsq < (rabsq * -diffsq)){ |
532 |
|
|
#ifdef IS_MPI |
533 |
|
|
a = atoms[a]->getGlobalIndex(); |
534 |
|
|
b = atoms[b]->getGlobalIndex(); |
535 |
|
|
#endif //is_mpi |
536 |
|
|
sprintf(painCave.errMsg, |
537 |
|
|
"Constraint failure in constrainA at atom %d and %d.\n", a, |
538 |
|
|
b); |
539 |
|
|
painCave.isFatal = 1; |
540 |
|
|
simError(); |
541 |
|
|
} |
542 |
|
|
|
543 |
|
|
rma = 1.0 / atoms[a]->getMass(); |
544 |
|
|
rmb = 1.0 / atoms[b]->getMass(); |
545 |
|
|
|
546 |
|
|
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
547 |
|
|
|
548 |
|
|
dx = rab[0] * gab; |
549 |
|
|
dy = rab[1] * gab; |
550 |
|
|
dz = rab[2] * gab; |
551 |
|
|
|
552 |
|
|
posA[0] += rma * dx; |
553 |
|
|
posA[1] += rma * dy; |
554 |
|
|
posA[2] += rma * dz; |
555 |
|
|
|
556 |
|
|
atoms[a]->setPos(posA); |
557 |
|
|
|
558 |
|
|
posB[0] -= rmb * dx; |
559 |
|
|
posB[1] -= rmb * dy; |
560 |
|
|
posB[2] -= rmb * dz; |
561 |
|
|
|
562 |
|
|
atoms[b]->setPos(posB); |
563 |
|
|
|
564 |
|
|
dx = dx / dt; |
565 |
|
|
dy = dy / dt; |
566 |
|
|
dz = dz / dt; |
567 |
|
|
|
568 |
|
|
atoms[a]->getVel(velA); |
569 |
|
|
|
570 |
|
|
velA[0] += rma * dx; |
571 |
|
|
velA[1] += rma * dy; |
572 |
|
|
velA[2] += rma * dz; |
573 |
|
|
|
574 |
|
|
atoms[a]->setVel(velA); |
575 |
|
|
|
576 |
|
|
atoms[b]->getVel(velB); |
577 |
|
|
|
578 |
|
|
velB[0] -= rmb * dx; |
579 |
|
|
velB[1] -= rmb * dy; |
580 |
|
|
velB[2] -= rmb * dz; |
581 |
|
|
|
582 |
|
|
atoms[b]->setVel(velB); |
583 |
|
|
|
584 |
|
|
moving[a] = 1; |
585 |
|
|
moving[b] = 1; |
586 |
|
|
done = 0; |
587 |
|
|
} |
588 |
|
|
} |
589 |
|
|
} |
590 |
|
|
|
591 |
|
|
for (i = 0; i < nAtoms; i++){ |
592 |
|
|
moved[i] = moving[i]; |
593 |
|
|
moving[i] = 0; |
594 |
|
|
} |
595 |
|
|
|
596 |
|
|
iteration++; |
597 |
|
|
} |
598 |
|
|
|
599 |
|
|
if (!done){ |
600 |
|
|
sprintf(painCave.errMsg, |
601 |
|
|
"Constraint failure in constrainA, too many iterations: %d\n", |
602 |
|
|
iteration); |
603 |
|
|
painCave.isFatal = 1; |
604 |
|
|
simError(); |
605 |
|
|
} |
606 |
|
|
|
607 |
|
|
} |
608 |
|
|
|
609 |
|
|
template<typename T> void Integrator<T>::constrainB(void){ |
610 |
|
|
int i, j; |
611 |
|
|
int done; |
612 |
|
|
double posA[3], posB[3]; |
613 |
|
|
double velA[3], velB[3]; |
614 |
|
|
double vxab, vyab, vzab; |
615 |
|
|
double rab[3]; |
616 |
|
|
int a, b, ax, ay, az, bx, by, bz; |
617 |
|
|
double rma, rmb; |
618 |
|
|
double dx, dy, dz; |
619 |
|
|
double rvab; |
620 |
|
|
double gab; |
621 |
|
|
int iteration; |
622 |
|
|
|
623 |
|
|
for (i = 0; i < nAtoms; i++){ |
624 |
|
|
moving[i] = 0; |
625 |
|
|
moved[i] = 1; |
626 |
|
|
} |
627 |
|
|
|
628 |
|
|
done = 0; |
629 |
|
|
iteration = 0; |
630 |
|
|
while (!done && (iteration < maxIteration)){ |
631 |
|
|
done = 1; |
632 |
|
|
|
633 |
|
|
for (i = 0; i < nConstrained; i++){ |
634 |
|
|
a = constrainedA[i]; |
635 |
|
|
b = constrainedB[i]; |
636 |
|
|
|
637 |
|
|
ax = (a * 3) + 0; |
638 |
|
|
ay = (a * 3) + 1; |
639 |
|
|
az = (a * 3) + 2; |
640 |
|
|
|
641 |
|
|
bx = (b * 3) + 0; |
642 |
|
|
by = (b * 3) + 1; |
643 |
|
|
bz = (b * 3) + 2; |
644 |
|
|
|
645 |
|
|
if (moved[a] || moved[b]){ |
646 |
|
|
atoms[a]->getVel(velA); |
647 |
|
|
atoms[b]->getVel(velB); |
648 |
|
|
|
649 |
|
|
vxab = velA[0] - velB[0]; |
650 |
|
|
vyab = velA[1] - velB[1]; |
651 |
|
|
vzab = velA[2] - velB[2]; |
652 |
|
|
|
653 |
|
|
atoms[a]->getPos(posA); |
654 |
|
|
atoms[b]->getPos(posB); |
655 |
|
|
|
656 |
|
|
for (j = 0; j < 3; j++) |
657 |
|
|
rab[j] = posA[j] - posB[j]; |
658 |
|
|
|
659 |
|
|
info->wrapVector(rab); |
660 |
|
|
|
661 |
|
|
rma = 1.0 / atoms[a]->getMass(); |
662 |
|
|
rmb = 1.0 / atoms[b]->getMass(); |
663 |
|
|
|
664 |
|
|
rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
665 |
|
|
|
666 |
|
|
gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
667 |
|
|
|
668 |
|
|
if (fabs(gab) > tol){ |
669 |
|
|
dx = rab[0] * gab; |
670 |
|
|
dy = rab[1] * gab; |
671 |
|
|
dz = rab[2] * gab; |
672 |
|
|
|
673 |
|
|
velA[0] += rma * dx; |
674 |
|
|
velA[1] += rma * dy; |
675 |
|
|
velA[2] += rma * dz; |
676 |
|
|
|
677 |
|
|
atoms[a]->setVel(velA); |
678 |
|
|
|
679 |
|
|
velB[0] -= rmb * dx; |
680 |
|
|
velB[1] -= rmb * dy; |
681 |
|
|
velB[2] -= rmb * dz; |
682 |
|
|
|
683 |
|
|
atoms[b]->setVel(velB); |
684 |
|
|
|
685 |
|
|
moving[a] = 1; |
686 |
|
|
moving[b] = 1; |
687 |
|
|
done = 0; |
688 |
|
|
} |
689 |
|
|
} |
690 |
|
|
} |
691 |
|
|
|
692 |
|
|
for (i = 0; i < nAtoms; i++){ |
693 |
|
|
moved[i] = moving[i]; |
694 |
|
|
moving[i] = 0; |
695 |
|
|
} |
696 |
|
|
|
697 |
|
|
iteration++; |
698 |
|
|
} |
699 |
|
|
|
700 |
|
|
if (!done){ |
701 |
|
|
sprintf(painCave.errMsg, |
702 |
|
|
"Constraint failure in constrainB, too many iterations: %d\n", |
703 |
|
|
iteration); |
704 |
|
|
painCave.isFatal = 1; |
705 |
|
|
simError(); |
706 |
|
|
} |
707 |
|
|
} |
708 |
|
|
|
709 |
|
|
template<typename T> void Integrator<T>::rotationPropagation |
710 |
|
|
( StuntDouble* sd, double ji[3] ){ |
711 |
|
|
|
712 |
|
|
double angle; |
713 |
|
|
double A[3][3], I[3][3]; |
714 |
|
|
int i, j, k; |
715 |
|
|
|
716 |
|
|
// use the angular velocities to propagate the rotation matrix a |
717 |
|
|
// full time step |
718 |
|
|
|
719 |
|
|
sd->getA(A); |
720 |
|
|
sd->getI(I); |
721 |
|
|
|
722 |
|
|
if (sd->isLinear()) { |
723 |
gezelter |
204 |
|
724 |
gezelter |
2 |
i = sd->linearAxis(); |
725 |
|
|
j = (i+1)%3; |
726 |
|
|
k = (i+2)%3; |
727 |
gezelter |
204 |
|
728 |
gezelter |
2 |
angle = dt2 * ji[j] / I[j][j]; |
729 |
|
|
this->rotate( k, i, angle, ji, A ); |
730 |
|
|
|
731 |
|
|
angle = dt * ji[k] / I[k][k]; |
732 |
|
|
this->rotate( i, j, angle, ji, A); |
733 |
|
|
|
734 |
|
|
angle = dt2 * ji[j] / I[j][j]; |
735 |
|
|
this->rotate( k, i, angle, ji, A ); |
736 |
|
|
|
737 |
|
|
} else { |
738 |
|
|
// rotate about the x-axis |
739 |
|
|
angle = dt2 * ji[0] / I[0][0]; |
740 |
|
|
this->rotate( 1, 2, angle, ji, A ); |
741 |
|
|
|
742 |
|
|
// rotate about the y-axis |
743 |
|
|
angle = dt2 * ji[1] / I[1][1]; |
744 |
|
|
this->rotate( 2, 0, angle, ji, A ); |
745 |
|
|
|
746 |
|
|
// rotate about the z-axis |
747 |
|
|
angle = dt * ji[2] / I[2][2]; |
748 |
|
|
sd->addZangle(angle); |
749 |
|
|
this->rotate( 0, 1, angle, ji, A); |
750 |
|
|
|
751 |
|
|
// rotate about the y-axis |
752 |
|
|
angle = dt2 * ji[1] / I[1][1]; |
753 |
|
|
this->rotate( 2, 0, angle, ji, A ); |
754 |
|
|
|
755 |
|
|
// rotate about the x-axis |
756 |
|
|
angle = dt2 * ji[0] / I[0][0]; |
757 |
|
|
this->rotate( 1, 2, angle, ji, A ); |
758 |
|
|
|
759 |
|
|
} |
760 |
|
|
sd->setA( A ); |
761 |
|
|
} |
762 |
|
|
|
763 |
|
|
template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
764 |
|
|
double angle, double ji[3], |
765 |
|
|
double A[3][3]){ |
766 |
|
|
int i, j, k; |
767 |
|
|
double sinAngle; |
768 |
|
|
double cosAngle; |
769 |
|
|
double angleSqr; |
770 |
|
|
double angleSqrOver4; |
771 |
|
|
double top, bottom; |
772 |
|
|
double rot[3][3]; |
773 |
|
|
double tempA[3][3]; |
774 |
|
|
double tempJ[3]; |
775 |
|
|
|
776 |
|
|
// initialize the tempA |
777 |
|
|
|
778 |
|
|
for (i = 0; i < 3; i++){ |
779 |
|
|
for (j = 0; j < 3; j++){ |
780 |
|
|
tempA[j][i] = A[i][j]; |
781 |
|
|
} |
782 |
|
|
} |
783 |
|
|
|
784 |
|
|
// initialize the tempJ |
785 |
|
|
|
786 |
|
|
for (i = 0; i < 3; i++) |
787 |
|
|
tempJ[i] = ji[i]; |
788 |
|
|
|
789 |
|
|
// initalize rot as a unit matrix |
790 |
|
|
|
791 |
|
|
rot[0][0] = 1.0; |
792 |
|
|
rot[0][1] = 0.0; |
793 |
|
|
rot[0][2] = 0.0; |
794 |
|
|
|
795 |
|
|
rot[1][0] = 0.0; |
796 |
|
|
rot[1][1] = 1.0; |
797 |
|
|
rot[1][2] = 0.0; |
798 |
|
|
|
799 |
|
|
rot[2][0] = 0.0; |
800 |
|
|
rot[2][1] = 0.0; |
801 |
|
|
rot[2][2] = 1.0; |
802 |
|
|
|
803 |
|
|
// use a small angle aproximation for sin and cosine |
804 |
|
|
|
805 |
|
|
angleSqr = angle * angle; |
806 |
|
|
angleSqrOver4 = angleSqr / 4.0; |
807 |
|
|
top = 1.0 - angleSqrOver4; |
808 |
|
|
bottom = 1.0 + angleSqrOver4; |
809 |
|
|
|
810 |
|
|
cosAngle = top / bottom; |
811 |
|
|
sinAngle = angle / bottom; |
812 |
|
|
|
813 |
|
|
rot[axes1][axes1] = cosAngle; |
814 |
|
|
rot[axes2][axes2] = cosAngle; |
815 |
|
|
|
816 |
|
|
rot[axes1][axes2] = sinAngle; |
817 |
|
|
rot[axes2][axes1] = -sinAngle; |
818 |
|
|
|
819 |
|
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
820 |
|
|
|
821 |
|
|
for (i = 0; i < 3; i++){ |
822 |
|
|
ji[i] = 0.0; |
823 |
|
|
for (k = 0; k < 3; k++){ |
824 |
|
|
ji[i] += rot[i][k] * tempJ[k]; |
825 |
|
|
} |
826 |
|
|
} |
827 |
|
|
|
828 |
|
|
// rotate the Rotation matrix acording to: |
829 |
|
|
// A[][] = A[][] * transpose(rot[][]) |
830 |
|
|
|
831 |
|
|
|
832 |
|
|
// NOte for as yet unknown reason, we are performing the |
833 |
|
|
// calculation as: |
834 |
|
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
835 |
|
|
|
836 |
|
|
for (i = 0; i < 3; i++){ |
837 |
|
|
for (j = 0; j < 3; j++){ |
838 |
|
|
A[j][i] = 0.0; |
839 |
|
|
for (k = 0; k < 3; k++){ |
840 |
|
|
A[j][i] += tempA[i][k] * rot[j][k]; |
841 |
|
|
} |
842 |
|
|
} |
843 |
|
|
} |
844 |
|
|
} |
845 |
|
|
|
846 |
|
|
template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
847 |
|
|
myFF->doForces(calcPot, calcStress); |
848 |
|
|
} |
849 |
|
|
|
850 |
|
|
template<typename T> void Integrator<T>::thermalize(){ |
851 |
|
|
tStats->velocitize(); |
852 |
|
|
} |
853 |
|
|
|
854 |
|
|
template<typename T> double Integrator<T>::getConservedQuantity(void){ |
855 |
|
|
return tStats->getTotalE(); |
856 |
|
|
} |
857 |
|
|
template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
858 |
|
|
//By default, return a null string |
859 |
|
|
//The reason we use string instead of char* is that if we use char*, we will |
860 |
|
|
//return a pointer point to local variable which might cause problem |
861 |
|
|
return string(); |
862 |
|
|
} |