ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/DLM.cpp
Revision: 1711
Committed: Sat May 19 02:58:35 2012 UTC (12 years, 11 months ago) by gezelter
File size: 5397 byte(s)
Log Message:
Some fixes for DataStorage issues.  Removed outdated zangle stuff that
has been replaced by the more modern restraints.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "DLM.hpp"
44
45 namespace OpenMD {
46
47 void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) {
48 RealType dt2 = 0.5 * dt;
49 RealType angle;
50
51 RotMat3x3d A = sd->getA();
52 Mat3x3d I = sd->getI();
53
54 // use the angular velocities to propagate the rotation matrix a full time step
55 if (sd->isLinear()) {
56
57 int i = sd->linearAxis();
58 int j = (i+1)%3;
59 int k = (i+2)%3;
60
61 angle = dt2 * ji[j] / I(j, j);
62 rotateStep( k, i, angle, ji, A );
63
64 angle = dt * ji[k] / I(k, k);
65 rotateStep( i, j, angle, ji, A);
66
67 angle = dt2 * ji[j] / I(j, j);
68 rotateStep( k, i, angle, ji, A );
69
70 } else {
71 // rotate about the x-axis
72 angle = dt2 * ji[0] / I(0, 0);
73 rotateStep( 1, 2, angle, ji, A );
74
75 // rotate about the y-axis
76 angle = dt2 * ji[1] / I(1, 1);
77 rotateStep( 2, 0, angle, ji, A );
78
79 // rotate about the z-axis
80 angle = dt * ji[2] / I(2, 2);
81 rotateStep( 0, 1, angle, ji, A);
82
83 // rotate about the y-axis
84 angle = dt2 * ji[1] / I(1, 1);
85 rotateStep( 2, 0, angle, ji, A );
86
87 // rotate about the x-axis
88 angle = dt2 * ji[0] / I(0, 0);
89 rotateStep( 1, 2, angle, ji, A );
90
91 }
92
93 sd->setA( A );
94 }
95
96
97 void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) {
98
99 RealType sinAngle;
100 RealType cosAngle;
101 RealType angleSqr;
102 RealType angleSqrOver4;
103 RealType top, bottom;
104
105 RotMat3x3d tempA(A); // initialize the tempA
106 Vector3d tempJ(0.0);
107
108 RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix
109
110 // use a small angle aproximation for sin and cosine
111
112 angleSqr = angle * angle;
113 angleSqrOver4 = angleSqr / 4.0;
114 top = 1.0 - angleSqrOver4;
115 bottom = 1.0 + angleSqrOver4;
116
117 cosAngle = top / bottom;
118 sinAngle = angle / bottom;
119
120 // or don't use the small angle approximation:
121 //cosAngle = cos(angle);
122 //sinAngle = sin(angle);
123 rot(axes1, axes1) = cosAngle;
124 rot(axes2, axes2) = cosAngle;
125
126 rot(axes1, axes2) = sinAngle;
127 rot(axes2, axes1) = -sinAngle;
128
129 // rotate the momentum acoording to: ji[] = rot[][] * ji[]
130 ji = rot * ji;
131
132 // This code comes from converting an algorithm detailed in
133 // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber,
134 // Leimkuhler and McLachlan (DLM) for use in our code.
135 // In Appendix A, the DLM paper has the change to the rotation
136 // matrix as: Q = Q * rot.transpose(), but our rotation matrix
137 // A is actually equivalent to Q.transpose(). This fact can be
138 // seen on page 5849 of the DLM paper where a lab frame
139 // dipole \mu_i(t) is expressed in terms of a body-fixed
140 // reference orientation, \bar{\mu_i} and the rotation matrix, Q:
141 // \mu_i(t) = Q * \bar{\mu_i}
142 // Our code computes lab frame vectors from body-fixed reference
143 // vectors using:
144 // v_{lab} = A.transpose() * v_{body}
145 // (See StuntDouble.hpp for confirmation of this fact).
146 //
147 // So, using the identity:
148 // (A * B).transpose() = B.transpose() * A.transpose(), we
149 // get the equivalent of Q = Q * rot.transpose() for our code to be:
150
151 A = rot * A;
152
153 }
154
155
156 }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date