ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/integrators/DLM.cpp
Revision: 1665
Committed: Tue Nov 22 20:38:56 2011 UTC (13 years, 5 months ago) by gezelter
File size: 5425 byte(s)
Log Message:
updated copyright notices

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42    
43     #include "DLM.hpp"
44    
45 gezelter 1390 namespace OpenMD {
46 gezelter 246
47 tim 963 void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) {
48     RealType dt2 = 0.5 * dt;
49     RealType angle;
50 gezelter 246
51     RotMat3x3d A = sd->getA();
52     Mat3x3d I = sd->getI();
53    
54     // use the angular velocities to propagate the rotation matrix a full time step
55     if (sd->isLinear()) {
56    
57 gezelter 507 int i = sd->linearAxis();
58     int j = (i+1)%3;
59     int k = (i+2)%3;
60 gezelter 246
61 gezelter 507 angle = dt2 * ji[j] / I(j, j);
62     rotateStep( k, i, angle, ji, A );
63 gezelter 246
64 gezelter 507 angle = dt * ji[k] / I(k, k);
65     rotateStep( i, j, angle, ji, A);
66 gezelter 246
67 gezelter 507 angle = dt2 * ji[j] / I(j, j);
68     rotateStep( k, i, angle, ji, A );
69 gezelter 246
70     } else {
71 gezelter 507 // rotate about the x-axis
72     angle = dt2 * ji[0] / I(0, 0);
73     rotateStep( 1, 2, angle, ji, A );
74 gezelter 246
75 gezelter 507 // rotate about the y-axis
76     angle = dt2 * ji[1] / I(1, 1);
77     rotateStep( 2, 0, angle, ji, A );
78 gezelter 246
79 gezelter 507 // rotate about the z-axis
80     angle = dt * ji[2] / I(2, 2);
81     sd->addZangle(angle);
82     rotateStep( 0, 1, angle, ji, A);
83 gezelter 246
84 gezelter 507 // rotate about the y-axis
85     angle = dt2 * ji[1] / I(1, 1);
86     rotateStep( 2, 0, angle, ji, A );
87 gezelter 246
88 gezelter 507 // rotate about the x-axis
89     angle = dt2 * ji[0] / I(0, 0);
90     rotateStep( 1, 2, angle, ji, A );
91 gezelter 246
92     }
93    
94     sd->setA( A );
95 gezelter 507 }
96 gezelter 246
97    
98 tim 963 void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) {
99 gezelter 246
100 tim 963 RealType sinAngle;
101     RealType cosAngle;
102     RealType angleSqr;
103     RealType angleSqrOver4;
104     RealType top, bottom;
105 gezelter 246
106     RotMat3x3d tempA(A); // initialize the tempA
107     Vector3d tempJ(0.0);
108    
109     RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix
110    
111     // use a small angle aproximation for sin and cosine
112    
113 xsun 1216 angleSqr = angle * angle;
114     angleSqrOver4 = angleSqr / 4.0;
115     top = 1.0 - angleSqrOver4;
116     bottom = 1.0 + angleSqrOver4;
117 gezelter 246
118 xsun 1216 cosAngle = top / bottom;
119     sinAngle = angle / bottom;
120    
121     // or don't use the small angle approximation:
122     //cosAngle = cos(angle);
123     //sinAngle = sin(angle);
124 gezelter 246 rot(axes1, axes1) = cosAngle;
125     rot(axes2, axes2) = cosAngle;
126    
127     rot(axes1, axes2) = sinAngle;
128     rot(axes2, axes1) = -sinAngle;
129    
130     // rotate the momentum acoording to: ji[] = rot[][] * ji[]
131     ji = rot * ji;
132    
133 xsun 1216 // This code comes from converting an algorithm detailed in
134     // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber,
135     // Leimkuhler and McLachlan (DLM) for use in our code.
136     // In Appendix A, the DLM paper has the change to the rotation
137     // matrix as: Q = Q * rot.transpose(), but our rotation matrix
138     // A is actually equivalent to Q.transpose(). This fact can be
139     // seen on page 5849 of the DLM paper where a lab frame
140     // dipole \mu_i(t) is expressed in terms of a body-fixed
141     // reference orientation, \bar{\mu_i} and the rotation matrix, Q:
142     // \mu_i(t) = Q * \bar{\mu_i}
143     // Our code computes lab frame vectors from body-fixed reference
144     // vectors using:
145     // v_{lab} = A.transpose() * v_{body}
146     // (See StuntDouble.hpp for confirmation of this fact).
147     //
148     // So, using the identity:
149     // (A * B).transpose() = B.transpose() * A.transpose(), we
150     // get the equivalent of Q = Q * rot.transpose() for our code to be:
151    
152     A = rot * A;
153 gezelter 246
154 gezelter 507 }
155 gezelter 246
156    
157     }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date