1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "hydrodynamics/Ellipsoid.hpp" |
44 |
#include "utils/PhysicalConstants.hpp" |
45 |
#include "math/LU.hpp" |
46 |
|
47 |
namespace OpenMD { |
48 |
|
49 |
Ellipsoid::Ellipsoid(Vector3d origin, RealType rAxial, RealType rEquatorial, |
50 |
Mat3x3d rotMat) : origin_(origin), rAxial_(rAxial), |
51 |
rEquatorial_(rEquatorial), |
52 |
rotMat_(rotMat) { |
53 |
if (rAxial_ > rEquatorial_) { |
54 |
rMajor_ = rAxial_; |
55 |
rMinor_ = rEquatorial_; |
56 |
} else { |
57 |
rMajor_ = rEquatorial_; |
58 |
rMinor_ = rAxial_; |
59 |
} |
60 |
} |
61 |
|
62 |
bool Ellipsoid::isInterior(Vector3d pos) { |
63 |
Vector3d r = pos - origin_; |
64 |
Vector3d rbody = rotMat_ * r; |
65 |
|
66 |
RealType xoverb = rbody[0]/rEquatorial_; |
67 |
RealType yoverb = rbody[1]/rEquatorial_; |
68 |
RealType zovera = rbody[2]/rAxial_; |
69 |
|
70 |
bool result; |
71 |
if (xoverb*xoverb + yoverb*yoverb + zovera*zovera < 1) |
72 |
result = true; |
73 |
else |
74 |
result = false; |
75 |
|
76 |
return result; |
77 |
} |
78 |
|
79 |
std::pair<Vector3d, Vector3d> Ellipsoid::getBoundingBox() { |
80 |
|
81 |
std::pair<Vector3d, Vector3d> boundary; |
82 |
//make a cubic box |
83 |
RealType rad = rAxial_ > rEquatorial_ ? rAxial_ : rEquatorial_; |
84 |
Vector3d r(rad, rad, rad); |
85 |
boundary.first = origin_ - r; |
86 |
boundary.second = origin_ + r; |
87 |
return boundary; |
88 |
} |
89 |
|
90 |
HydroProp* Ellipsoid::getHydroProp(RealType viscosity, |
91 |
RealType temperature) { |
92 |
|
93 |
RealType a = rAxial_; |
94 |
RealType b = rEquatorial_; |
95 |
RealType a2 = a * a; |
96 |
RealType b2 = b * b; |
97 |
|
98 |
RealType p = a / b; |
99 |
RealType S; |
100 |
if (p > 1.0) { |
101 |
// Ellipsoid is prolate: |
102 |
S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); |
103 |
} else { |
104 |
// Ellipsoid is oblate: |
105 |
S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); |
106 |
} |
107 |
|
108 |
RealType pi = NumericConstant::PI; |
109 |
RealType XittA = 16.0 * pi * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
110 |
RealType XittB = 32.0 * pi * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
111 |
RealType XirrA = 32.0/3.0 * pi * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
112 |
RealType XirrB = 32.0/3.0 * pi * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
113 |
|
114 |
|
115 |
Mat6x6d Xi, XiCopy, D; |
116 |
|
117 |
Xi(0,0) = XittB; |
118 |
Xi(1,1) = XittB; |
119 |
Xi(2,2) = XittA; |
120 |
Xi(3,3) = XirrB; |
121 |
Xi(4,4) = XirrB; |
122 |
Xi(5,5) = XirrA; |
123 |
|
124 |
Xi *= PhysicalConstants::viscoConvert; |
125 |
|
126 |
XiCopy = Xi; |
127 |
invertMatrix(XiCopy, D); |
128 |
RealType kt = PhysicalConstants::kb * temperature; // in kcal mol^-1 |
129 |
D *= kt; |
130 |
|
131 |
HydroProp* hprop = new HydroProp(V3Zero, Xi, D); |
132 |
|
133 |
return hprop; |
134 |
|
135 |
} |
136 |
} |