6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "hydrodynamics/Ellipsoid.hpp" |
44 |
< |
#include "utils/OOPSEConstant.hpp" |
44 |
> |
#include "utils/PhysicalConstants.hpp" |
45 |
|
#include "math/LU.hpp" |
46 |
|
|
47 |
< |
namespace oopse { |
47 |
> |
namespace OpenMD { |
48 |
|
|
49 |
< |
Ellipsoid::Ellipsoid(Vector3d origin, double rMajor, double rMinor,Mat3x3d rotMat) |
50 |
< |
: origin_(origin), rMajor_(rMajor), rMinor_(rMinor), rotMat_(rotMat) { |
51 |
< |
|
49 |
> |
Ellipsoid::Ellipsoid(Vector3d origin, RealType rAxial, RealType rEquatorial, |
50 |
> |
Mat3x3d rotMat) : origin_(origin), rAxial_(rAxial), |
51 |
> |
rEquatorial_(rEquatorial), |
52 |
> |
rotMat_(rotMat) { |
53 |
> |
if (rAxial_ > rEquatorial_) { |
54 |
> |
rMajor_ = rAxial_; |
55 |
> |
rMinor_ = rEquatorial_; |
56 |
> |
} else { |
57 |
> |
rMajor_ = rEquatorial_; |
58 |
> |
rMinor_ = rAxial_; |
59 |
> |
} |
60 |
|
} |
61 |
+ |
|
62 |
|
bool Ellipsoid::isInterior(Vector3d pos) { |
63 |
|
Vector3d r = pos - origin_; |
64 |
|
Vector3d rbody = rotMat_ * r; |
65 |
< |
double xovera = rbody[0]/rMajor_; |
66 |
< |
double yovera = rbody[1]/rMajor_; |
67 |
< |
double zoverb = rbody[2]/rMinor_; |
65 |
> |
|
66 |
> |
RealType xoverb = rbody[0]/rEquatorial_; |
67 |
> |
RealType yoverb = rbody[1]/rEquatorial_; |
68 |
> |
RealType zovera = rbody[2]/rAxial_; |
69 |
|
|
70 |
|
bool result; |
71 |
< |
if (xovera*xovera + yovera*yovera + zoverb*zoverb < 1) |
71 |
> |
if (xoverb*xoverb + yoverb*yoverb + zovera*zovera < 1) |
72 |
|
result = true; |
73 |
|
else |
74 |
|
result = false; |
80 |
|
|
81 |
|
std::pair<Vector3d, Vector3d> boundary; |
82 |
|
//make a cubic box |
83 |
< |
double rad = rMajor_ > rMinor_ ? rMajor_ : rMinor_; |
83 |
> |
RealType rad = rAxial_ > rEquatorial_ ? rAxial_ : rEquatorial_; |
84 |
|
Vector3d r(rad, rad, rad); |
85 |
|
boundary.first = origin_ - r; |
86 |
|
boundary.second = origin_ + r; |
87 |
|
return boundary; |
88 |
|
} |
89 |
|
|
90 |
< |
HydroProps Ellipsoid::getHydroProps(double viscosity, double temperature) { |
90 |
> |
HydroProp* Ellipsoid::getHydroProp(RealType viscosity, |
91 |
> |
RealType temperature) { |
92 |
|
|
93 |
< |
double a = rMinor_; |
94 |
< |
double b = rMajor_; |
95 |
< |
double a2 = a * a; |
96 |
< |
double b2 = b* b; |
93 |
> |
RealType a = rAxial_; |
94 |
> |
RealType b = rEquatorial_; |
95 |
> |
RealType a2 = a * a; |
96 |
> |
RealType b2 = b * b; |
97 |
|
|
98 |
< |
double p = a /b; |
99 |
< |
double S; |
100 |
< |
if (p > 1.0) { //prolate |
98 |
> |
RealType p = a / b; |
99 |
> |
RealType S; |
100 |
> |
if (p > 1.0) { |
101 |
> |
// Ellipsoid is prolate: |
102 |
|
S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); |
103 |
< |
} else { //oblate |
103 |
> |
} else { |
104 |
> |
// Ellipsoid is oblate: |
105 |
|
S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); |
106 |
|
} |
107 |
|
|
108 |
< |
double P = 1.0/(a2 - b2) * (S - 2.0/a); |
109 |
< |
double Q = 0.5/(a2-b2) * (2.0*a/b2 - S); |
108 |
> |
RealType pi = NumericConstant::PI; |
109 |
> |
RealType XittA = 16.0 * pi * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
110 |
> |
RealType XittB = 32.0 * pi * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
111 |
> |
RealType XirrA = 32.0/3.0 * pi * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
112 |
> |
RealType XirrB = 32.0/3.0 * pi * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
113 |
|
|
97 |
– |
double transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
98 |
– |
double transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
99 |
– |
double rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
100 |
– |
double rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
114 |
|
|
115 |
+ |
Mat6x6d Xi, XiCopy, D; |
116 |
|
|
117 |
< |
HydroProps props; |
117 |
> |
Xi(0,0) = XittB; |
118 |
> |
Xi(1,1) = XittB; |
119 |
> |
Xi(2,2) = XittA; |
120 |
> |
Xi(3,3) = XirrB; |
121 |
> |
Xi(4,4) = XirrB; |
122 |
> |
Xi(5,5) = XirrA; |
123 |
> |
|
124 |
> |
Xi *= PhysicalConstants::viscoConvert; |
125 |
|
|
126 |
< |
props.Xi(0,0) = transMajor; |
127 |
< |
props.Xi(1,1) = transMajor; |
128 |
< |
props.Xi(2,2) = transMinor; |
129 |
< |
props.Xi(3,3) = rotMajor; |
109 |
< |
props.Xi(4,4) = rotMajor; |
110 |
< |
props.Xi(5,5) = rotMinor; |
111 |
< |
|
112 |
< |
const double convertConstant = 6.023; //convert poise.angstrom to amu/fs |
113 |
< |
props.Xi *= convertConstant; |
114 |
< |
|
115 |
< |
Mat6x6d XiCopy = props.Xi; |
116 |
< |
invertMatrix(XiCopy, props.D); |
117 |
< |
double kt = OOPSEConstant::kB * temperature; |
118 |
< |
props.D *= kt; |
119 |
< |
props.Xi *= OOPSEConstant::kb * temperature; |
126 |
> |
XiCopy = Xi; |
127 |
> |
invertMatrix(XiCopy, D); |
128 |
> |
RealType kt = PhysicalConstants::kb * temperature; // in kcal mol^-1 |
129 |
> |
D *= kt; |
130 |
|
|
131 |
< |
return props; |
131 |
> |
HydroProp* hprop = new HydroProp(V3Zero, Xi, D); |
132 |
|
|
133 |
+ |
return hprop; |
134 |
+ |
|
135 |
|
} |
136 |
|
} |