45 |
|
|
46 |
|
namespace oopse { |
47 |
|
|
48 |
< |
Ellipsoid::Ellipsoid(Vector3d origin, RealType rMajor, RealType rMinor,Mat3x3d rotMat) |
49 |
< |
: origin_(origin), rMajor_(rMajor), rMinor_(rMinor), rotMat_(rotMat) { |
50 |
< |
|
48 |
> |
Ellipsoid::Ellipsoid(Vector3d origin, RealType rAxial, RealType rEquatorial, |
49 |
> |
Mat3x3d rotMat) : origin_(origin), rAxial_(rAxial), |
50 |
> |
rEquatorial_(rEquatorial), |
51 |
> |
rotMat_(rotMat) { |
52 |
> |
if (rAxial_ > rEquatorial_) { |
53 |
> |
rMajor_ = rAxial_; |
54 |
> |
rMinor_ = rEquatorial_; |
55 |
> |
} else { |
56 |
> |
rMajor_ = rEquatorial_; |
57 |
> |
rMinor_ = rAxial_; |
58 |
> |
} |
59 |
|
} |
60 |
+ |
|
61 |
|
bool Ellipsoid::isInterior(Vector3d pos) { |
62 |
|
Vector3d r = pos - origin_; |
63 |
|
Vector3d rbody = rotMat_ * r; |
64 |
< |
RealType xovera = rbody[0]/rMajor_; |
65 |
< |
RealType yovera = rbody[1]/rMajor_; |
66 |
< |
RealType zoverb = rbody[2]/rMinor_; |
64 |
> |
|
65 |
> |
RealType xoverb = rbody[0]/rEquatorial_; |
66 |
> |
RealType yoverb = rbody[1]/rEquatorial_; |
67 |
> |
RealType zovera = rbody[2]/rAxial_; |
68 |
|
|
69 |
|
bool result; |
70 |
< |
if (xovera*xovera + yovera*yovera + zoverb*zoverb < 1) |
70 |
> |
if (xoverb*xoverb + yoverb*yoverb + zovera*zovera < 1) |
71 |
|
result = true; |
72 |
|
else |
73 |
|
result = false; |
79 |
|
|
80 |
|
std::pair<Vector3d, Vector3d> boundary; |
81 |
|
//make a cubic box |
82 |
< |
RealType rad = rMajor_ > rMinor_ ? rMajor_ : rMinor_; |
82 |
> |
RealType rad = rAxial_ > rEquatorial_ ? rAxial_ : rEquatorial_; |
83 |
|
Vector3d r(rad, rad, rad); |
84 |
|
boundary.first = origin_ - r; |
85 |
|
boundary.second = origin_ + r; |
86 |
|
return boundary; |
87 |
|
} |
88 |
|
|
89 |
< |
HydroProps Ellipsoid::getHydroProps(RealType viscosity, RealType temperature) { |
89 |
> |
HydroProp* Ellipsoid::getHydroProp(RealType viscosity, |
90 |
> |
RealType temperature) { |
91 |
|
|
92 |
< |
RealType a = rMinor_; |
93 |
< |
RealType b = rMajor_; |
92 |
> |
RealType a = rAxial_; |
93 |
> |
RealType b = rEquatorial_; |
94 |
|
RealType a2 = a * a; |
95 |
< |
RealType b2 = b* b; |
95 |
> |
RealType b2 = b * b; |
96 |
|
|
97 |
< |
RealType p = a /b; |
97 |
> |
RealType p = a / b; |
98 |
|
RealType S; |
99 |
< |
if (p > 1.0) { //prolate |
99 |
> |
if (p > 1.0) { |
100 |
> |
// Ellipsoid is prolate: |
101 |
|
S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); |
102 |
< |
} else { //oblate |
102 |
> |
} else { |
103 |
> |
// Ellipsoid is oblate: |
104 |
|
S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); |
105 |
|
} |
106 |
|
|
107 |
< |
RealType P = 1.0/(a2 - b2) * (S - 2.0/a); |
108 |
< |
RealType Q = 0.5/(a2-b2) * (2.0*a/b2 - S); |
107 |
> |
RealType pi = NumericConstant::PI; |
108 |
> |
RealType XittA = 16.0 * pi * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
109 |
> |
RealType XittB = 32.0 * pi * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
110 |
> |
RealType XirrA = 32.0/3.0 * pi * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
111 |
> |
RealType XirrB = 32.0/3.0 * pi * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
112 |
|
|
97 |
– |
RealType transMinor = 16.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
98 |
– |
RealType transMajor = 32.0 * NumericConstant::PI * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
99 |
– |
RealType rotMinor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
100 |
– |
RealType rotMajor = 32.0/3.0 * NumericConstant::PI * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
113 |
|
|
114 |
+ |
Mat6x6d Xi, XiCopy, D; |
115 |
|
|
116 |
< |
HydroProps props; |
116 |
> |
Xi(0,0) = XittB; |
117 |
> |
Xi(1,1) = XittB; |
118 |
> |
Xi(2,2) = XittA; |
119 |
> |
Xi(3,3) = XirrB; |
120 |
> |
Xi(4,4) = XirrB; |
121 |
> |
Xi(5,5) = XirrA; |
122 |
> |
|
123 |
> |
const RealType convertConstant = 1.439326479e4; // converts Poise angstroms |
124 |
> |
// to kcal fs mol^-1 Angstrom^-1 |
125 |
> |
|
126 |
> |
Xi *= convertConstant; |
127 |
|
|
128 |
< |
props.Xi(0,0) = transMajor; |
129 |
< |
props.Xi(1,1) = transMajor; |
130 |
< |
props.Xi(2,2) = transMinor; |
131 |
< |
props.Xi(3,3) = rotMajor; |
109 |
< |
props.Xi(4,4) = rotMajor; |
110 |
< |
props.Xi(5,5) = rotMinor; |
111 |
< |
|
112 |
< |
const RealType convertConstant = 6.023; //convert poise.angstrom to amu/fs |
113 |
< |
props.Xi *= convertConstant; |
114 |
< |
|
115 |
< |
Mat6x6d XiCopy = props.Xi; |
116 |
< |
invertMatrix(XiCopy, props.D); |
117 |
< |
RealType kt = OOPSEConstant::kB * temperature; |
118 |
< |
props.D *= kt; |
119 |
< |
props.Xi *= OOPSEConstant::kb * temperature; |
128 |
> |
XiCopy = Xi; |
129 |
> |
invertMatrix(XiCopy, D); |
130 |
> |
RealType kt = OOPSEConstant::kb * temperature; // in kcal mol^-1 |
131 |
> |
D *= kt; |
132 |
|
|
133 |
< |
return props; |
133 |
> |
HydroProp* hprop = new HydroProp(V3Zero, Xi, D); |
134 |
|
|
135 |
+ |
return hprop; |
136 |
+ |
|
137 |
|
} |
138 |
|
} |