1 |
gezelter |
1716 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
|
|
* 1. Redistributions of source code must retain the above copyright |
10 |
|
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
|
|
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
|
*/ |
42 |
|
|
|
43 |
|
|
#include "FluctuatingChargeNVT.hpp" |
44 |
|
|
#include "primitives/Molecule.hpp" |
45 |
|
|
#include "utils/simError.h" |
46 |
|
|
#include "utils/PhysicalConstants.hpp" |
47 |
|
|
|
48 |
|
|
namespace OpenMD { |
49 |
|
|
|
50 |
|
|
FluctuatingChargeNVT::FluctuatingChargeNVT(SimInfo* info) : |
51 |
|
|
FluctuatingChargePropagator(info), chiTolerance_ (1e-6), maxIterNum_(4), |
52 |
|
|
thermo(info), |
53 |
|
|
currentSnapshot_(info->getSnapshotManager()->getCurrentSnapshot()) { |
54 |
|
|
|
55 |
gezelter |
1731 |
|
56 |
gezelter |
1716 |
if (info_->usesFluctuatingCharges()) { |
57 |
|
|
if (info_->getNFluctuatingCharges() > 0) { |
58 |
|
|
|
59 |
|
|
hasFlucQ_ = true; |
60 |
|
|
Globals* simParams = info_->getSimParams(); |
61 |
gezelter |
1731 |
FluctuatingChargeParameters* fqParams = simParams->getFluctuatingChargeParameters(); |
62 |
gezelter |
1716 |
|
63 |
|
|
if (simParams->haveDt()) { |
64 |
|
|
dt_ = simParams->getDt(); |
65 |
|
|
dt2_ = dt_ * 0.5; |
66 |
|
|
} else { |
67 |
|
|
sprintf(painCave.errMsg, |
68 |
|
|
"FluctuatingChargeNVT Error: dt is not set\n"); |
69 |
|
|
painCave.isFatal = 1; |
70 |
|
|
simError(); |
71 |
|
|
} |
72 |
|
|
|
73 |
|
|
if (!simParams->getUseIntialExtendedSystemState()) { |
74 |
|
|
currentSnapshot_->setChiElectronic(0.0); |
75 |
|
|
currentSnapshot_->setIntegralOfChiElectronicDt(0.0); |
76 |
|
|
} |
77 |
|
|
|
78 |
gezelter |
1731 |
if (!fqParams->haveTargetTemp()) { |
79 |
gezelter |
1716 |
sprintf(painCave.errMsg, "You can't use the FluctuatingChargeNVT " |
80 |
|
|
"propagator without a flucQ.targetTemp!\n"); |
81 |
|
|
painCave.isFatal = 1; |
82 |
|
|
painCave.severity = OPENMD_ERROR; |
83 |
|
|
simError(); |
84 |
|
|
} else { |
85 |
gezelter |
1731 |
targetTemp_ = fqParams->getTargetTemp(); |
86 |
gezelter |
1716 |
} |
87 |
|
|
|
88 |
|
|
// We must set tauThermostat. |
89 |
|
|
|
90 |
gezelter |
1731 |
if (!fqParams->haveTauThermostat()) { |
91 |
gezelter |
1716 |
sprintf(painCave.errMsg, "If you use the FluctuatingChargeNVT\n" |
92 |
|
|
"\tpropagator, you must set flucQ.tauThermostat .\n"); |
93 |
|
|
|
94 |
|
|
painCave.severity = OPENMD_ERROR; |
95 |
|
|
painCave.isFatal = 1; |
96 |
|
|
simError(); |
97 |
|
|
} else { |
98 |
gezelter |
1731 |
tauThermostat_ = fqParams->getTauThermostat(); |
99 |
gezelter |
1716 |
} |
100 |
|
|
updateSizes(); |
101 |
|
|
} |
102 |
|
|
} |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
void FluctuatingChargeNVT::initialize() { |
106 |
|
|
|
107 |
|
|
if (!hasFlucQ_) return; |
108 |
|
|
|
109 |
|
|
SimInfo::MoleculeIterator i; |
110 |
|
|
Molecule::FluctuatingChargeIterator j; |
111 |
|
|
Molecule* mol; |
112 |
|
|
Atom* atom; |
113 |
|
|
|
114 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
115 |
|
|
mol = info_->nextMolecule(i)) { |
116 |
|
|
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
117 |
|
|
atom = mol->nextFluctuatingCharge(j)) { |
118 |
|
|
atom->setFlucQPos(0.0); |
119 |
|
|
atom->setFlucQVel(0.0); |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
cerr << "Yeah, you should probably implement this\n"; |
124 |
|
|
} |
125 |
|
|
|
126 |
|
|
void FluctuatingChargeNVT::moveA() { |
127 |
|
|
|
128 |
|
|
if (!hasFlucQ_) return; |
129 |
|
|
|
130 |
|
|
SimInfo::MoleculeIterator i; |
131 |
|
|
Molecule::FluctuatingChargeIterator j; |
132 |
|
|
Molecule* mol; |
133 |
|
|
Atom* atom; |
134 |
|
|
RealType cvel, cpos, cfrc, cmass; |
135 |
|
|
|
136 |
|
|
RealType chi = currentSnapshot_->getChiElectronic(); |
137 |
|
|
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiElectronicDt(); |
138 |
|
|
RealType instTemp = thermo.getElectronicTemperature(); |
139 |
|
|
|
140 |
|
|
cerr << "why are we here?\n"; |
141 |
|
|
|
142 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
143 |
|
|
mol = info_->nextMolecule(i)) { |
144 |
|
|
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
145 |
|
|
atom = mol->nextFluctuatingCharge(j)) { |
146 |
|
|
|
147 |
|
|
cvel = atom->getFlucQVel(); |
148 |
|
|
cpos = atom->getFlucQPos(); |
149 |
|
|
cfrc = atom->getFlucQFrc(); |
150 |
|
|
cmass = atom->getChargeMass(); |
151 |
|
|
|
152 |
|
|
// velocity half step |
153 |
|
|
cvel += dt2_ *PhysicalConstants::energyConvert/cmass*cfrc - dt2_*chi*cvel; |
154 |
|
|
// position whole step |
155 |
|
|
cpos += dt_ * cvel; |
156 |
|
|
|
157 |
|
|
atom->setFlucQVel(cvel); |
158 |
|
|
atom->setFlucQPos(cpos); |
159 |
|
|
} |
160 |
|
|
} |
161 |
|
|
|
162 |
|
|
chi += dt2_ * (instTemp / targetTemp_ - 1.0) / |
163 |
|
|
(tauThermostat_ * tauThermostat_); |
164 |
|
|
|
165 |
|
|
integralOfChidt += chi * dt2_; |
166 |
|
|
currentSnapshot_->setChiElectronic(chi); |
167 |
|
|
currentSnapshot_->setIntegralOfChiElectronicDt(integralOfChidt); |
168 |
|
|
|
169 |
|
|
} |
170 |
|
|
|
171 |
|
|
void FluctuatingChargeNVT::updateSizes() { |
172 |
|
|
if (!hasFlucQ_) return; |
173 |
|
|
oldVel_.resize(info_->getNFluctuatingCharges()); |
174 |
|
|
} |
175 |
|
|
|
176 |
|
|
void FluctuatingChargeNVT::moveB() { |
177 |
|
|
if (!hasFlucQ_) return; |
178 |
|
|
SimInfo::MoleculeIterator i; |
179 |
|
|
Molecule::FluctuatingChargeIterator j; |
180 |
|
|
Molecule* mol; |
181 |
|
|
Atom* atom; |
182 |
|
|
RealType instTemp; |
183 |
|
|
RealType chi = currentSnapshot_->getChiElectronic(); |
184 |
|
|
RealType oldChi = chi; |
185 |
|
|
RealType prevChi; |
186 |
|
|
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiElectronicDt(); |
187 |
|
|
int index; |
188 |
|
|
RealType cfrc, cvel, cmass; |
189 |
|
|
|
190 |
|
|
index = 0; |
191 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
192 |
|
|
mol = info_->nextMolecule(i)) { |
193 |
|
|
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
194 |
|
|
atom = mol->nextFluctuatingCharge(j)) { |
195 |
|
|
|
196 |
|
|
oldVel_[index] = atom->getFlucQVel(); |
197 |
|
|
++index; |
198 |
|
|
} |
199 |
|
|
} |
200 |
|
|
|
201 |
|
|
// do the iteration: |
202 |
|
|
|
203 |
|
|
for(int k = 0; k < maxIterNum_; k++) { |
204 |
|
|
index = 0; |
205 |
|
|
instTemp = thermo.getElectronicTemperature(); |
206 |
|
|
|
207 |
|
|
// evolve chi another half step using the temperature at t + dt/2 |
208 |
|
|
prevChi = chi; |
209 |
|
|
chi = oldChi + dt2_ * (instTemp / targetTemp_ - 1.0) / |
210 |
|
|
(tauThermostat_ * tauThermostat_); |
211 |
|
|
|
212 |
|
|
for (mol = info_->beginMolecule(i); mol != NULL; |
213 |
|
|
mol = info_->nextMolecule(i)) { |
214 |
|
|
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
215 |
|
|
atom = mol->nextFluctuatingCharge(j)) { |
216 |
|
|
|
217 |
|
|
cfrc = atom->getFlucQFrc(); |
218 |
|
|
cvel =atom->getFlucQVel(); |
219 |
|
|
cmass = atom->getChargeMass(); |
220 |
|
|
|
221 |
|
|
// velocity half step |
222 |
|
|
cvel = oldVel_[index] + dt2_/cmass*PhysicalConstants::energyConvert * cfrc - dt2_*chi*oldVel_[index]; |
223 |
|
|
|
224 |
|
|
atom->setFlucQVel(cvel); |
225 |
|
|
++index; |
226 |
|
|
} |
227 |
|
|
} |
228 |
|
|
if (fabs(prevChi - chi) <= chiTolerance_) |
229 |
|
|
break; |
230 |
|
|
} |
231 |
|
|
integralOfChidt += dt2_ * chi; |
232 |
|
|
currentSnapshot_->setChiElectronic(chi); |
233 |
|
|
currentSnapshot_->setIntegralOfChiElectronicDt(integralOfChidt); |
234 |
|
|
} |
235 |
|
|
|
236 |
|
|
void FluctuatingChargeNVT::resetPropagator() { |
237 |
|
|
if (!hasFlucQ_) return; |
238 |
|
|
currentSnapshot_->setChiElectronic(0.0); |
239 |
|
|
currentSnapshot_->setIntegralOfChiElectronicDt(0.0); |
240 |
|
|
} |
241 |
|
|
|
242 |
|
|
RealType FluctuatingChargeNVT::calcConservedQuantity() { |
243 |
|
|
if (!hasFlucQ_) return 0.0; |
244 |
|
|
RealType chi = currentSnapshot_->getChiElectronic(); |
245 |
|
|
RealType integralOfChidt = currentSnapshot_->getIntegralOfChiElectronicDt(); |
246 |
|
|
RealType fkBT = info_->getNFluctuatingCharges() * |
247 |
|
|
PhysicalConstants::kB *targetTemp_; |
248 |
|
|
|
249 |
|
|
RealType thermostat_kinetic = fkBT * tauThermostat_ * tauThermostat_ * |
250 |
|
|
chi * chi / (2.0 * PhysicalConstants::energyConvert); |
251 |
|
|
|
252 |
|
|
RealType thermostat_potential = fkBT * integralOfChidt / |
253 |
|
|
PhysicalConstants::energyConvert; |
254 |
|
|
|
255 |
|
|
return thermostat_kinetic + thermostat_potential; |
256 |
|
|
} |
257 |
|
|
} |