1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "constraints/Rattle.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
namespace OpenMD { |
47 |
|
48 |
Rattle::Rattle(SimInfo* info) : info_(info), maxConsIteration_(10), consTolerance_(1.0e-6) { |
49 |
|
50 |
if (info_->getSimParams()->haveDt()) { |
51 |
dt_ = info_->getSimParams()->getDt(); |
52 |
} else { |
53 |
sprintf(painCave.errMsg, |
54 |
"Integrator Error: dt is not set\n"); |
55 |
painCave.isFatal = 1; |
56 |
simError(); |
57 |
} |
58 |
|
59 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
60 |
} |
61 |
|
62 |
void Rattle::constraintA() { |
63 |
if (info_->getNConstraints() > 0) { |
64 |
doConstraint(&Rattle::constraintPairA); |
65 |
} |
66 |
} |
67 |
void Rattle::constraintB() { |
68 |
if (info_->getNConstraints() > 0) { |
69 |
doConstraint(&Rattle::constraintPairB); |
70 |
} |
71 |
} |
72 |
|
73 |
void Rattle::doConstraint(ConstraintPairFuncPtr func) { |
74 |
Molecule* mol; |
75 |
SimInfo::MoleculeIterator mi; |
76 |
ConstraintElem* consElem; |
77 |
Molecule::ConstraintElemIterator cei; |
78 |
ConstraintPair* consPair; |
79 |
Molecule::ConstraintPairIterator cpi; |
80 |
|
81 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
82 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; consElem = mol->nextConstraintElem(cei)) { |
83 |
consElem->setMoved(true); |
84 |
consElem->setMoving(false); |
85 |
} |
86 |
} |
87 |
|
88 |
//main loop of constraint algorithm |
89 |
bool done = false; |
90 |
int iteration = 0; |
91 |
while(!done && iteration < maxConsIteration_){ |
92 |
done = true; |
93 |
|
94 |
//loop over every constraint pair |
95 |
|
96 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
97 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; consPair = mol->nextConstraintPair(cpi)) { |
98 |
|
99 |
|
100 |
//dispatch constraint algorithm |
101 |
if(consPair->isMoved()) { |
102 |
int exeStatus = (this->*func)(consPair); |
103 |
|
104 |
switch(exeStatus){ |
105 |
case consFail: |
106 |
sprintf(painCave.errMsg, |
107 |
"Constraint failure in Rattle::constrainA, Constraint Fail\n"); |
108 |
painCave.isFatal = 1; |
109 |
simError(); |
110 |
|
111 |
break; |
112 |
case consSuccess: |
113 |
//constrain the pair by moving two elements |
114 |
done = false; |
115 |
consPair->getConsElem1()->setMoving(true); |
116 |
consPair->getConsElem2()->setMoving(true); |
117 |
break; |
118 |
case consAlready: |
119 |
//current pair is already constrained, do not need to move the elements |
120 |
break; |
121 |
default: |
122 |
sprintf(painCave.errMsg, "ConstraintAlgorithm::doConstrain() Error: unrecognized status"); |
123 |
painCave.isFatal = 1; |
124 |
simError(); |
125 |
break; |
126 |
} |
127 |
} |
128 |
} |
129 |
}//end for(iter->first()) |
130 |
|
131 |
|
132 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
133 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; consElem = mol->nextConstraintElem(cei)) { |
134 |
consElem->setMoved(consElem->getMoving()); |
135 |
consElem->setMoving(false); |
136 |
} |
137 |
} |
138 |
|
139 |
iteration++; |
140 |
}//end while |
141 |
|
142 |
if (!done){ |
143 |
sprintf(painCave.errMsg, |
144 |
"Constraint failure in Rattle::constrainA, too many iterations: %d\n", |
145 |
iteration); |
146 |
painCave.isFatal = 1; |
147 |
simError(); |
148 |
} |
149 |
} |
150 |
|
151 |
int Rattle::constraintPairA(ConstraintPair* consPair){ |
152 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
153 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
154 |
|
155 |
Vector3d posA = consElem1->getPos(); |
156 |
Vector3d posB = consElem2->getPos(); |
157 |
|
158 |
Vector3d pab = posA -posB; |
159 |
|
160 |
//periodic boundary condition |
161 |
|
162 |
currentSnapshot_->wrapVector(pab); |
163 |
|
164 |
RealType pabsq = pab.lengthSquare(); |
165 |
|
166 |
RealType rabsq = consPair->getConsDistSquare(); |
167 |
RealType diffsq = rabsq - pabsq; |
168 |
|
169 |
// the original rattle code from alan tidesley |
170 |
if (fabs(diffsq) > (consTolerance_ * rabsq * 2)){ |
171 |
|
172 |
Vector3d oldPosA = consElem1->getPrevPos(); |
173 |
Vector3d oldPosB = consElem2->getPrevPos(); |
174 |
|
175 |
Vector3d rab = oldPosA - oldPosB; |
176 |
|
177 |
currentSnapshot_->wrapVector(rab); |
178 |
|
179 |
RealType rpab = dot(rab, pab); |
180 |
RealType rpabsq = rpab * rpab; |
181 |
|
182 |
if (rpabsq < (rabsq * -diffsq)){ |
183 |
return consFail; |
184 |
} |
185 |
|
186 |
RealType rma = 1.0 / consElem1->getMass(); |
187 |
RealType rmb = 1.0 / consElem2->getMass(); |
188 |
|
189 |
RealType gab = diffsq / (2.0 * (rma + rmb) * rpab); |
190 |
|
191 |
Vector3d delta = rab * gab; |
192 |
|
193 |
//set atom1's position |
194 |
posA += rma * delta; |
195 |
consElem1->setPos(posA); |
196 |
|
197 |
//set atom2's position |
198 |
posB -= rmb * delta; |
199 |
consElem2->setPos(posB); |
200 |
|
201 |
delta /= dt_; |
202 |
|
203 |
//set atom1's velocity |
204 |
Vector3d velA = consElem1->getVel(); |
205 |
velA += rma * delta; |
206 |
consElem1->setVel(velA); |
207 |
|
208 |
//set atom2's velocity |
209 |
Vector3d velB = consElem2->getVel(); |
210 |
velB -= rmb * delta; |
211 |
consElem2->setVel(velB); |
212 |
|
213 |
return consSuccess; |
214 |
} |
215 |
else |
216 |
return consAlready; |
217 |
|
218 |
} |
219 |
|
220 |
|
221 |
int Rattle::constraintPairB(ConstraintPair* consPair){ |
222 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
223 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
224 |
|
225 |
|
226 |
Vector3d velA = consElem1->getVel(); |
227 |
Vector3d velB = consElem2->getVel(); |
228 |
|
229 |
Vector3d dv = velA - velB; |
230 |
|
231 |
Vector3d posA = consElem1->getPos(); |
232 |
Vector3d posB = consElem2->getPos(); |
233 |
|
234 |
Vector3d rab = posA - posB; |
235 |
|
236 |
currentSnapshot_->wrapVector(rab); |
237 |
|
238 |
RealType rma = 1.0 / consElem1->getMass(); |
239 |
RealType rmb = 1.0 / consElem2->getMass(); |
240 |
|
241 |
RealType rvab = dot(rab, dv); |
242 |
|
243 |
RealType gab = -rvab / ((rma + rmb) * consPair->getConsDistSquare()); |
244 |
|
245 |
if (fabs(gab) > consTolerance_){ |
246 |
Vector3d delta = rab * gab; |
247 |
|
248 |
velA += rma * delta; |
249 |
consElem1->setVel(velA); |
250 |
|
251 |
velB -= rmb * delta; |
252 |
consElem2->setVel(velB); |
253 |
|
254 |
return consSuccess; |
255 |
} |
256 |
else |
257 |
return consAlready; |
258 |
|
259 |
} |
260 |
|
261 |
} |