1 |
/* |
2 |
* Copyright (c) 2013 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "clusters/Decahedron.hpp" |
44 |
#include <math.h> |
45 |
|
46 |
using namespace std; |
47 |
|
48 |
namespace OpenMD { |
49 |
|
50 |
Decahedron::Decahedron(int columnAtoms, int shells, int twinAtoms) : |
51 |
N_(columnAtoms), M_(shells), K_(twinAtoms) { |
52 |
|
53 |
Basis.clear(); |
54 |
Points.clear(); |
55 |
|
56 |
// |
57 |
// Initialize Basis vectors. |
58 |
// |
59 |
const RealType phi = 2.0 * M_PI / 5.0; // 72 degrees |
60 |
const RealType r3o2 = 0.5 * sqrt(3.0); |
61 |
|
62 |
Basis.push_back( Vector3d( r3o2*cos(0.0*phi), r3o2*sin(0.0*phi), 0.0 )); |
63 |
Basis.push_back( Vector3d( r3o2*cos(1.0*phi), r3o2*sin(1.0*phi), 0.0 )); |
64 |
Basis.push_back( Vector3d( r3o2*cos(2.0*phi), r3o2*sin(2.0*phi), 0.0 )); |
65 |
Basis.push_back( Vector3d( r3o2*cos(3.0*phi), r3o2*sin(3.0*phi), 0.0 )); |
66 |
Basis.push_back( Vector3d( r3o2*cos(4.0*phi), r3o2*sin(4.0*phi), 0.0 )); |
67 |
} |
68 |
|
69 |
Decahedron::~Decahedron() { |
70 |
Basis.clear(); |
71 |
Points.clear(); |
72 |
} |
73 |
|
74 |
vector<Vector3d> Decahedron::getPoints() { |
75 |
// Generate central column of Decahedron |
76 |
|
77 |
for (int i = 0; i < N_; i++) { |
78 |
Points.push_back( Vector3d( 0.0, 0.0, RealType(i) - 0.5 * (N_ - 1) ) ); |
79 |
} |
80 |
|
81 |
for (int i = 1; i < M_ + 1; i++) { |
82 |
// generate the shells of the decahedron: |
83 |
|
84 |
vector<Vector3d> ring; |
85 |
|
86 |
if (i > K_ - 1) { |
87 |
ring = truncatedRing(i, i - K_ + 1); |
88 |
} else { |
89 |
ring = truncatedRing(i, 0); |
90 |
} |
91 |
|
92 |
// shift the rings in the z-direction (along the shell) |
93 |
|
94 |
for (int j = 0; j < N_ - i; j++) { |
95 |
Vector3d shift = Vector3d(0, 0, -0.5 * RealType((N_-i)-1) + RealType(j)); |
96 |
|
97 |
for (vector<Vector3d>::iterator k = ring.begin(); |
98 |
k != ring.end(); ++k) { |
99 |
|
100 |
Points.push_back( (*k) + shift); |
101 |
|
102 |
} |
103 |
} |
104 |
} |
105 |
return Points; |
106 |
} |
107 |
|
108 |
vector<Vector3d> Decahedron::truncatedRing( int n, int k ) { |
109 |
// This function generates the rings of a Decahedron |
110 |
// n: index of shell (order of ring) |
111 |
// k: how many atoms are missing from both ends of one side of |
112 |
// pentagon ring |
113 |
|
114 |
vector<Vector3d> ring; |
115 |
|
116 |
// Generate atomic coordinates along each side of pentagonal ring |
117 |
for (int i = 0; i < 5; i++) { |
118 |
|
119 |
Vector3d b1 = Basis[i]; |
120 |
Vector3d b2 = Basis[(i + 1) % 5]; |
121 |
|
122 |
if (k == 0) { |
123 |
// without truncation |
124 |
for (int j = 0; j < n; j++) { |
125 |
ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); |
126 |
} |
127 |
|
128 |
} else { |
129 |
for (int j = k; j <= n - k; j++) { |
130 |
// with truncation |
131 |
ring.push_back( RealType(n) * b1 + RealType(j) * (b2-b1)); |
132 |
} |
133 |
} |
134 |
} |
135 |
return ring; |
136 |
} |
137 |
|
138 |
CurlingStoneDecahedron::CurlingStoneDecahedron(int columnAtoms, int shells, |
139 |
int twinAtoms, |
140 |
int truncatedPlanes) : |
141 |
Decahedron(columnAtoms, shells, twinAtoms), T_(truncatedPlanes) {} |
142 |
|
143 |
vector<Vector3d> CurlingStoneDecahedron::getPoints() { |
144 |
|
145 |
vector<Vector3d> raw = Decahedron::getPoints(); |
146 |
vector<Vector3d> snipped; |
147 |
RealType maxZ, minZ; |
148 |
|
149 |
maxZ = raw.begin()->z(); |
150 |
minZ = raw.begin()->z(); |
151 |
|
152 |
for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { |
153 |
maxZ = max(maxZ, (*i).z()); |
154 |
minZ = min(minZ, (*i).z()); |
155 |
} |
156 |
|
157 |
for (vector<Vector3d>::iterator i = raw.begin(); i != raw.end(); ++i) { |
158 |
if ( ((*i).z() < maxZ - 0.995 * (T_ / 2.0) ) && |
159 |
((*i).z() > minZ + 0.995 * (T_ / 2.0) ) ){ |
160 |
snipped.push_back( (*i) ); |
161 |
} |
162 |
} |
163 |
return snipped; |
164 |
} |
165 |
|
166 |
} |