1 |
< |
#ifndef __THERMO_H__ |
2 |
< |
#define __THERMO_H__ |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
#ifndef BRAINS_THERMO_HPP |
43 |
> |
#define BRAINS_THERMO_HPP |
44 |
|
|
45 |
< |
#include "Atom.hpp" |
46 |
< |
#include "SRI.hpp" |
6 |
< |
#include "SimInfo.hpp" |
7 |
< |
#include "randomSPRNG.hpp" |
45 |
> |
#include "primitives/Atom.hpp" |
46 |
> |
#include "brains/SimInfo.hpp" |
47 |
|
|
48 |
< |
class Thermo{ |
48 |
> |
namespace oopse { |
49 |
|
|
50 |
< |
public: |
12 |
< |
|
13 |
< |
Thermo( SimInfo* the_info ); |
14 |
< |
~Thermo(); |
50 |
> |
class Thermo{ |
51 |
|
|
52 |
< |
// note: all the following energies are in kcal/mol |
52 |
> |
public: |
53 |
|
|
54 |
< |
double getKinetic(); // the total kinetic energy |
19 |
< |
double getPotential(); // the total potential energy |
20 |
< |
double getTotalE(); // gets the total energy |
54 |
> |
Thermo( SimInfo* info) : info_(info) {} |
55 |
|
|
56 |
< |
double getTemperature(); // gives the instant temp. in K |
56 |
> |
// note: all the following energies are in kcal/mol |
57 |
|
|
58 |
< |
double getPressure(); // gives the instant pressure in atm; |
59 |
< |
double getPressureX(); // gives the instant pressure in atm; |
60 |
< |
double getPressureY(); // gives the instant pressure in atm; |
27 |
< |
double getPressureZ(); // gives the instant pressure in atm; |
58 |
> |
RealType getKinetic(); // the total kinetic energy |
59 |
> |
RealType getPotential(); // the total potential energy |
60 |
> |
RealType getTotalE(); // gets the total energy |
61 |
|
|
62 |
< |
void getPressureTensor(double press[3][3]); // gives the pressure |
30 |
< |
// tensor in |
31 |
< |
// amu*fs^-2*Ang^-1 |
32 |
< |
double getVolume(); // gives the volume in Ang^3 |
62 |
> |
RealType getTemperature(); // gives the instant temp. in K |
63 |
|
|
64 |
< |
int getNDF(); // get the number of degrees of freedom in the system |
65 |
< |
int getNDFraw(); // get the number of raw degrees of freedom in the system |
66 |
< |
// i.e. don't subtract constraints or system COM. |
64 |
> |
RealType getPressure(); // gives the instant pressure in atm; |
65 |
> |
RealType getPressureX() { return getPressure(0); } |
66 |
> |
RealType getPressureY() { return getPressure(1); } |
67 |
> |
RealType getPressureZ() { return getPressure(2); } |
68 |
> |
|
69 |
> |
Mat3x3d getPressureTensor(); // gives the pressure tensor in amu*fs^-2*Ang^-1 |
70 |
> |
RealType getVolume(); // gives the volume in Ang^3 |
71 |
> |
|
72 |
> |
void saveStat(); |
73 |
> |
|
74 |
> |
private: |
75 |
> |
RealType getPressure(int direction); |
76 |
> |
|
77 |
> |
SimInfo* info_; |
78 |
> |
}; |
79 |
|
|
80 |
< |
void velocitize(); // set the temperature to the target temp in SimInfo |
39 |
< |
// NOTE: srand48 should be seeded before calling. |
40 |
< |
void getCOMVel(double vdrift[3]); |
41 |
< |
void getCOM(double COM[3]); |
42 |
< |
void removeCOMdrift(); |
43 |
< |
|
44 |
< |
private: |
45 |
< |
SimInfo* info; |
46 |
< |
gaussianSPRNG *gaussStream; |
47 |
< |
}; |
80 |
> |
} //end namespace oopse |
81 |
|
#endif |